793 research outputs found

    Faithful to the Original: Fact Aware Neural Abstractive Summarization

    Full text link
    Unlike extractive summarization, abstractive summarization has to fuse different parts of the source text, which inclines to create fake facts. Our preliminary study reveals nearly 30% of the outputs from a state-of-the-art neural summarization system suffer from this problem. While previous abstractive summarization approaches usually focus on the improvement of informativeness, we argue that faithfulness is also a vital prerequisite for a practical abstractive summarization system. To avoid generating fake facts in a summary, we leverage open information extraction and dependency parse technologies to extract actual fact descriptions from the source text. The dual-attention sequence-to-sequence framework is then proposed to force the generation conditioned on both the source text and the extracted fact descriptions. Experiments on the Gigaword benchmark dataset demonstrate that our model can greatly reduce fake summaries by 80%. Notably, the fact descriptions also bring significant improvement on informativeness since they often condense the meaning of the source text.Comment: 8 pages, 3 figures, AAAI 201

    TGSum: Build Tweet Guided Multi-Document Summarization Dataset

    Full text link
    The development of summarization research has been significantly hampered by the costly acquisition of reference summaries. This paper proposes an effective way to automatically collect large scales of news-related multi-document summaries with reference to social media's reactions. We utilize two types of social labels in tweets, i.e., hashtags and hyper-links. Hashtags are used to cluster documents into different topic sets. Also, a tweet with a hyper-link often highlights certain key points of the corresponding document. We synthesize a linked document cluster to form a reference summary which can cover most key points. To this aim, we adopt the ROUGE metrics to measure the coverage ratio, and develop an Integer Linear Programming solution to discover the sentence set reaching the upper bound of ROUGE. Since we allow summary sentences to be selected from both documents and high-quality tweets, the generated reference summaries could be abstractive. Both informativeness and readability of the collected summaries are verified by manual judgment. In addition, we train a Support Vector Regression summarizer on DUC generic multi-document summarization benchmarks. With the collected data as extra training resource, the performance of the summarizer improves a lot on all the test sets. We release this dataset for further research.Comment: 7 pages, 1 figure in AAAI 201

    Inhomogeneous states with checkerboard order in the t-J Model

    Full text link
    We study inhomogeneous states in the t-J model using an unrestricted Gutzwiller approximation. We find that pa×papa\times pa checkerboard order, where pp is a doping dependent number, emerges from Fermi surface instabilities of both the staggered flux phase and the Fermi liquid state with realistic band parameters. In both cases, the checkerboard order develops at wave vectors (±2π/pa,0)(\pm 2\pi/pa,0), (0,±2π/pa)(0,\pm2\pi/pa) that are tied to the peaks of the wave-vector dependent susceptibility, and is of the Lomer-Rice-Scott type. The properties of such periodic, inhomogeneous states are discussed in connection to the checkerboard patterns observed by STM in underdoped cuprates.Comment: Published Versio

    Multi-Document Summarization via Discriminative Summary Reranking

    Full text link
    Existing multi-document summarization systems usually rely on a specific summarization model (i.e., a summarization method with a specific parameter setting) to extract summaries for different document sets with different topics. However, according to our quantitative analysis, none of the existing summarization models can always produce high-quality summaries for different document sets, and even a summarization model with good overall performance may produce low-quality summaries for some document sets. On the contrary, a baseline summarization model may produce high-quality summaries for some document sets. Based on the above observations, we treat the summaries produced by different summarization models as candidate summaries, and then explore discriminative reranking techniques to identify high-quality summaries from the candidates for difference document sets. We propose to extract a set of candidate summaries for each document set based on an ILP framework, and then leverage Ranking SVM for summary reranking. Various useful features have been developed for the reranking process, including word-level features, sentence-level features and summary-level features. Evaluation results on the benchmark DUC datasets validate the efficacy and robustness of our proposed approach

    Real is not True: Backdoor Attacks Against Deepfake Detection

    Full text link
    The proliferation of malicious deepfake applications has ignited substantial public apprehension, casting a shadow of doubt upon the integrity of digital media. Despite the development of proficient deepfake detection mechanisms, they persistently demonstrate pronounced vulnerability to an array of attacks. It is noteworthy that the pre-existing repertoire of attacks predominantly comprises adversarial example attack, predominantly manifesting during the testing phase. In the present study, we introduce a pioneering paradigm denominated as Bad-Deepfake, which represents a novel foray into the realm of backdoor attacks levied against deepfake detectors. Our approach hinges upon the strategic manipulation of a delimited subset of the training data, enabling us to wield disproportionate influence over the operational characteristics of a trained model. This manipulation leverages inherent frailties inherent to deepfake detectors, affording us the capacity to engineer triggers and judiciously select the most efficacious samples for the construction of the poisoned set. Through the synergistic amalgamation of these sophisticated techniques, we achieve an remarkable performance-a 100% attack success rate (ASR) against extensively employed deepfake detectors.Comment: BigDIA 202
    corecore