737 research outputs found

    Asymptotic Theory of Rerandomization in Treatment-Control Experiments

    Full text link
    Although complete randomization ensures covariate balance on average, the chance for observing significant differences between treatment and control covariate distributions increases with many covariates. Rerandomization discards randomizations that do not satisfy a predetermined covariate balance criterion, generally resulting in better covariate balance and more precise estimates of causal effects. Previous theory has derived finite sample theory for rerandomization under the assumptions of equal treatment group sizes, Gaussian covariate and outcome distributions, or additive causal effects, but not for the general sampling distribution of the difference-in-means estimator for the average causal effect. To supplement existing results, we develop asymptotic theory for rerandomization without these assumptions, which reveals a non-Gaussian asymptotic distribution for this estimator, specifically a linear combination of a Gaussian random variable and a truncated Gaussian random variable. This distribution follows because rerandomization affects only the projection of potential outcomes onto the covariate space but does not affect the corresponding orthogonal residuals. We also demonstrate that, compared to complete randomization, rerandomization reduces the asymptotic sampling variances and quantile ranges of the difference-in-means estimator. Moreover, our work allows the construction of accurate large-sample confidence intervals for the average causal effect, thereby revealing further advantages of rerandomization over complete randomization

    Chemical Self Assembly of Graphene Sheets

    Full text link
    Chemically derived graphene sheets were found to self-assemble onto patterned gold structures via electrostatic interactions between noncovalent functional groups on GS and gold. This afforded regular arrays of single graphene sheets on large substrates, characterized by scanning electron and Auger microscopy imaging and Raman spectroscopy. Self assembly was used for the first time to produce on-substrate and fully-suspended graphene electrical devices. Molecular coatings on the GS were removed by high current electrical annealing, which recovered the high electrical conductance and Dirac point of the GS. Molecular sensors for highly sensitive gas detections are demonstrated with self-assembled GS devices.Comment: Nano Research, in press, http://www.thenanoresearch.co

    Sensitivity Analysis for Quantiles of Hidden Biases in Matched Observational Studies

    Full text link
    In matched observational studies, the inferred causal conclusions pretending that matching has taken into account all confounding can be sensitive to unmeasured confounding. In such cases, a sensitivity analysis is often conducted, which investigates whether the observed association between treatment and outcome is due to effects caused by the treatment or it is due to hidden confounding. In general, a sensitivity analysis tries to infer the minimum amount of hidden biases needed in order to explain away the observed association between treatment and outcome, assuming that the treatment has no effect. If the needed bias is large, then the treatment is likely to have significant effects. The Rosenbaum sensitivity analysis is a modern approach for conducting sensitivity analysis for matched observational studies. It investigates what magnitude the maximum of the hidden biases from all matched sets needs to be in order to explain away the observed association, assuming that the treatment has no effect. However, such a sensitivity analysis can be overly conservative and pessimistic, especially when the investigators believe that some matched sets may have exceptionally large hidden biases. In this paper, we generalize Rosenbaum's framework to conduct sensitivity analysis on quantiles of hidden biases from all matched sets, which are more robust than the maximum. Moreover, we demonstrate that the proposed sensitivity analysis on all quantiles of hidden biases is simultaneously valid and is thus a free lunch added to the conventional sensitivity analysis. The proposed approach works for general outcomes, general matched studies and general test statistics. Finally, we demonstrate that the proposed sensitivity analysis also works for bounded null hypotheses as long as the test statistic satisfies certain properties. An R package implementing the proposed method is also available online
    • …
    corecore