5,205 research outputs found

    An Intermediate State of the {gamma}-Aminobutyric Acid Transporter GAT1 Revealed by Simultaneous Voltage Clamp and Fluorescence

    Get PDF
    The rat {gamma}-aminobutyric acid transporter GAT1 expressed in Xenopus oocytes was labeled at Cys74, and at one or more other sites, by tetramethylrhodamine-5-maleimide, without significantly altering GAT1 function. Voltage-jump relaxation analysis showed that fluorescence increased slightly and monotonically with hyperpolarization; the fluorescence at -140 mV was ~0.8% greater than at +60 mV. The time course of the fluorescence relaxations was mostly described by a single exponential with voltage-dependent but history-independent time constants ranging from ~20 ms at +60 mV to ~150 ms at -140 mV. The fluorescence did not saturate at the most negative potentials tested, and the midpoint of the fluorescence–voltage relation was at least 50 mV more negative than the midpoint of the charge–voltage relation previously identified with Na+ binding to GAT1. The presence of {gamma}-aminobutyric acid did not noticeably affect the fluorescence waveforms. The fluorescence signal depended on Na+ concentration with a Hill coefficient approaching 2. Increasing Cl- concentration modestly increased and accelerated the fluorescence relaxations for hyperpolarizing jumps. The fluorescence change was blocked by the GAT1 inhibitor, NO-711. For the W68L mutant of GAT1, the fluorescence relaxations occurred only during jumps to high positive potentials, in agreement with previous suggestions that this mutant is trapped in one conformational state except at these potentials. These observations suggest that the fluorescence signals monitor a novel state of GAT1, intermediate between the E*out and Eout states of Hilgemann, D.W., and C.-C. Lu (1999. J. Gen. Physiol. 114:459–476). Therefore, the study provides verification that conformational changes occur during GAT1 function

    Cyclic nucleotide-gated channels: structural basis of ligand efficacy and allosteric modulation

    Get PDF
    Most working proteins, including metabolic enzymes, transcription regulators, and membrane receptors, transporters, and ion channels, share the property of allosteric coupling. The term 'allosteric' means that these proteins mediate indirect interactions between sites that are physically separated on the protein. In the example of ligand-gated ion channels, the binding of a suitable ligand elicits local conformational changes at the binding site, which are coupled to further conformational changes in regions distant from the binding site. The physical motions finally arrive at the site of biological activity: the ion-permeating pore. The conformational changes that lead from the ligand binding to the actual opening of the pore comprise 'gating'. In 1956, del Castillo and Katz suggested that the competition between different ligands at nicotinic acetylcholine receptors (nAChRs) could be explained by formation of an intermediate, ligand-bound, yet inactive state of the receptor, which separates the active state of the receptor from the initial binding of the ligand (del Castillo & Katz, 1957). This 'binding-then-gating', two-step model went beyond the then-prevailing drug-receptor model that assumes a single bimolecular binding reaction, and paralleled Stephenson's conceptual dichotomy of 'affinity' and 'efficacy' (Stephenson, 1956). In 1965 Monod, Wyman and Changeux presented a simple allosteric model (the MWC model) (Monod et al. 1965) that explained the cooperative binding of oxygen to haemoglobin; it was adopted as an important paradigm for ligand-gated channels soon after its initial formulation (Changeux et al. 1967; Karlin, 1967; Colquhoun, 1973)

    Inelastic Collisions in an Ultracold quasi-2D Gas

    Full text link
    We present a formalism for rigorous calculations of cross sections for inelastic and reactive collisions of ultracold atoms and molecules confined by laser fields in quasi-2D geometry. Our results show that the elastic-to-inelastic ratios of collision cross sections are enhanced in the presence of a laser confinement and that the threshold energy dependence of the collision cross sections can be tuned by varying the confinement strength and external magnetic fields. The enhancement of the elastic-to-inelastic ratios is inversely proportional to ϵ/ω0\sqrt{\epsilon/\hbar \omega_0}, where ϵ\epsilon is the kinetic energy and ω0\omega_0 is the oscillation frequency of the trapped particles in the confinement potential.Comment: 4 pages, 4 figure

    Second OH Overtone Excitation And Statistical Dissociation Dynamics Of Peroxynitrous Acid

    Get PDF
    The second OH overtone transition of the trans-perp conformer of peroxynitrous acid (tp-HOONO) is identified using infrared action spectroscopy. HOONO is produced by the recombination of photolytically generated OH and NO(2) radicals, and then cooled in a pulsed supersonic expansion. The second overtone transition is assigned to tp-HOONO based on its vibrational frequency (10 195.3 cm(-1)) and rotational band contour, which are in accord with theoretical predictions and previous observations of the first overtone transition. The transition dipole moment associated with the overtone transition is rotated considerably from the OH bond axis, as evident from its hybrid band composition, indicating substantial charge redistribution upon OH stretch excitation. The overtone band exhibits homogeneous line broadening that is attributed to intramolecular vibrational redistribution, arising from the coupling of the initially excited OH stretch to other modes that ultimately lead to dissociation. The quantum state distributions of the OH X (2)Pi (nu=0) products following first and second OH overtone excitation of tp-HOONO are found to be statistical by comparison with three commonly used statistical models. The product state distributions are principally determined by the tp-HOONO binding energy of 16.2(1) kcal mol(-1). Only a small fraction of the OH products are produced in nu=1 following the second overtone excitation, consistent with statistical predictions

    From ab initio quantum mechanics to molecular neurobiology: A cation-pi binding site in the nicotinic receptor

    Get PDF
    The nicotinic acetylcholine receptor is the prototype ligand-gated ion channel. A number of aromatic amino acids have been identified as contributing to the agonist binding site, suggesting that cation-pi interactions may be involved in binding the quaternary ammonium group of the agonist, acetylcholine. Here we show a compelling correlation between: (i) ab initio quantum mechanical predictions of cation-pi binding abilities and (ii) EC50 values for acetylcholine at the receptor for a series of tryptophan derivatives that were incorporated into the receptor by using the in vivo nonsense-suppression method for unnatural amino acid incorporation. Such a correlation is seen at one, and only one, of the aromatic residues-tryptophan-149 of the alpha subunit. This finding indicates that, on binding, the cationic, quaternary ammonium group of acetylcholine makes van der Waals contact with the indole side chain of alpha tryptophan-149, providing the most precise structural information to date on this receptor. Consistent with this model, a tethered quaternary ammonium group emanating from position alpha 149 produces a constitutively active receptor

    Synote: development of a Web-based tool for synchronized annotations

    No full text
    This paper discusses the development of a Web-based media annotation application named Synote, which addresses the important issue that while the whole of a multimedia resource on the Web can be easily bookmarked, searched, linked to and tagged, it is still difficult to search or associate notes or other resources with a certain part of a resource. Synote supports the creation of synchronized notes, bookmarks, tags, links, images and text captions. It is a freely available application that enables any user to make annotations in and search annotations to any fragment of a continuous multimedia resource in the most used browsers and operating systems. In the implementation, Synote categorized different media resources and synchronized them via time line. The presentation of synchronized resources makes full use of Web 2.0 AJAX technology to enrich interoperability for the user experience. Positive evaluation results about the performance, efficiency and effectiveness of Synote were returned when using it with students and teachers for a number of undergraduate courses

    Scalable Spike-and-Slab

    Full text link
    Spike-and-slab priors are commonly used for Bayesian variable selection, due to their interpretability and favorable statistical properties. However, existing samplers for spike-and-slab posteriors incur prohibitive computational costs when the number of variables is large. In this article, we propose Scalable Spike-and-Slab (S3S^3), a scalable Gibbs sampling implementation for high-dimensional Bayesian regression with the continuous spike-and-slab prior of George and McCulloch (1993). For a dataset with nn observations and pp covariates, S3S^3 has order max{n2pt,np}\max\{ n^2 p_t, np \} computational cost at iteration tt where ptp_t never exceeds the number of covariates switching spike-and-slab states between iterations tt and t1t-1 of the Markov chain. This improves upon the order n2pn^2 p per-iteration cost of state-of-the-art implementations as, typically, ptp_t is substantially smaller than pp. We apply S3S^3 on synthetic and real-world datasets, demonstrating orders of magnitude speed-ups over existing exact samplers and significant gains in inferential quality over approximate samplers with comparable cost.Comment: 26 pages, 5 figure

    Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel

    Get PDF
    Tyrosine side chains participate in several distinct signaling pathways, including phosphorylation and membrane trafficking. A nonsense suppression procedure was used to incorporate a caged tyrosine residue in place of the natural tyrosine at position 242 of the inward rectifier channel Kir2.1 expressed in Xenopus oocytes. When tyrosine kinases were active, flash decaging led both to decreased K+ currents and also to substantial (15–26%) decreases in capacitance, implying net membrane endocytosis. A dominant negative dynamin mutant completely blocked the decaging-induced endocytosis and partially blocked the decaging-induced K+ channel inhibition. Thus, decaging of a single tyrosine residue in a single species of membrane protein leads to massive clathrin-mediated endocytosis; in fact, membrane area equivalent to many clathrin-coated vesicles is withdrawn from the oocyte surface for each Kir2.1 channel inhibited. Oocyte membrane proteins were also labeled with the thiol-reactive fluorophore tetramethylrhodamine-5-maleimide, and manipulations that decreased capacitance also decreased surface membrane fluorescence, confirming the net endocytosis. In single-channel studies, tyrosine kinase activation decreased the membrane density of active Kir2.1 channels per patch but did not change channel conductance or open probability, in agreement with the hypothesis that tyrosine phosphorylation results in endocytosis of Kir2.1 channels. Despite the Kir2.1 inhibition and endocytosis stimulated by tyrosine kinase activation, neither Western blotting nor 32P labeling produced evidence for direct tyrosine phosphorylation of Kir2.1. Therefore, it is likely that tyrosine phosphorylation affects Kir2.1 function indirectly, via interactions between clathrin adaptor proteins and a tyrosine-based sorting motif on Kir2.1 that is revealed by decaging the tyrosine side chain. These interactions inhibit a fraction of the Kir2.1 channels, possibly via direct occlusion of the conduction pathway, and also lead to endocytosis, which further decreases Kir2.1 currents. These data establish that side chain decaging can provide valuable time-resolved data about intracellular signaling systems
    corecore