11,307 research outputs found
The Nature of Solar Polar Rays
We use time series observations from the SOHO and Yohkoh spacecraft to study
solar polar rays. Contrary to our expectations, we find that the rays are
associated with active regions on the sun and are not features of the polar
coronal holes. They are extended, hot plasma structures formed in the active
regions and projected onto the plane of the sky above the polar coronal holes.
We present new observations and simple projection models that match long-lived
polar ray structures seen in limb synoptic maps. Individual projection patterns
last for at least 5 solar rotations.Comment: 10 pages, 5 PostScript figures. Fig.1 is in color. The paper is also
available at http://www.ifa.hawaii.edu/users/jing/papers.htm
Positive definiteness of the blended force-based quasicontinuum method
The development of consistent and stable quasicontinuum models for multidimensional crystalline solids remains a challenge. For example, proving the stability of the force-based quasicontinuum (QCF) model [M. Dobson and M. Luskin, M2AN Math. Model. Numer. Anal., 42 (2008), pp. 113--139] remains an open problem. In one and two dimensions, we show that by blending atomistic and Cauchy--Born continuum forces (instead of a sharp transition as in the QCF method) one obtains positive-definite blended force-based quasicontinuum (B-QCF) models. We establish sharp conditions on the required blending width
Positive definiteness of the blended force-based quasicontinuum method
The development of consistent and stable quasicontinuum models for multidimensional crystalline solids remains a challenge. For example, proving the stability of the force-based quasicontinuum (QCF) model [M. Dobson and M. Luskin, M2AN Math. Model. Numer. Anal., 42 (2008), pp. 113--139] remains an open problem. In one and two dimensions, we show that by blending atomistic and Cauchy--Born continuum forces (instead of a sharp transition as in the QCF method) one obtains positive-definite blended force-based quasicontinuum (B-QCF) models. We establish sharp conditions on the required blending width
CRYSTALLINE NANO STRUCTURES
The present invention comprises nano obelisks and nanostructures and methods and processes for same. The nano obelisks of the present invention are advantageous structures for use as electron source emitters. For example, the ultra sharp obelisks can be used as an emitter source to generate highly coherent and high energy electrons with high current
Surface Polar Phonon Dominated Electron Transport in Graphene
The effects of surface polar phonons on electronic transport properties of
monolayer graphene are studied by using a Monte Carlo simulation. Specifically,
the low-field electron mobility and saturation velocity are examined for
different substrates (SiC, SiO2, and HfO2) in comparison to the intrinsic case.
While the results show that the low-field mobility can be substantially reduced
by the introduction of surface polar phonon scattering, corresponding
degradation of the saturation velocity is not observed for all three substrates
at room temperature. It is also found that surface polar phonons can influence
graphene electrical resistivity even at low temperature, leading potentially to
inaccurate estimation of the acoustic phonon deformation potential constant
Information-theoretic classification of SNOMED improves the organization of context-sensitive excerpts from Cochrane Reviews
The emphasis on evidence based medicine (EBM) has placed increased focus on finding timely answers to clinical questions in presence of patients. Using a combination of natural language processing for the generation of clinical excerpts and information theoretic distance based clustering, we evaluated multiple approaches for the efficient
presentation of context-sensitive EBM excerpts
High visibility two photon interference of frequency time entangled photons generated in a quasi phase matched AlGaAs waveguide
We demonstrate experimentally the frequency time entanglement of photon pairs
produced in a CW pumped quasi phased matched AlGaAs superlattice waveguide. A
visibility of 96.0+-0.7% without background subtraction has been achieved,
which corresponds the violation of Bell inequality by 52 standard deviations
- …