638 research outputs found
Positive- and negative-pulsed argon plasma plumes in the open air
Cold atmospheric pressure plasma plumes have obtained great interests for their attractive features and application potentials. In this work, cold argon plasma plumes were generated in the open air by a single medical-needle excited by a high-power pulsed excitation source. Characteristic comparision was carried out in the plasmas under different polarties of applied voltages. The results showed that the positive pulsed plasma plume performed a larger discharge current and stronger optical emission than the negative case. Gas temperature of the plasmas were obtained by the Boltzmann plot method and fitting the syntheric-to-experimental spectrum of the OH (A-X) transition emission bands. It is found that both the positive and negative pulsed plasma plumes are under a relative low gas temperature about 400 K. Through the high-speed imaging, an interesting propagation process was observed for the positive pulsed plasma plume, during which the plasma first propagates in the form of plasma ‘bullets’, and then transits into typical stream propagation as soon as the ‘bullets’ disappears in the open air, which is much different with the negative case
Propagation dynamics of a room-temperature pulsed argon plasma plume through a simple dispersion-grating diagnostic method
In this paper, a novel grating-ICCD camera dispersion diagnostic method was designed to investigate the propagation behaviors of an open-air pulsed argon plasma plume. Based on the dispersion feature of gratings, the irradiative plasma plume was dispersed into several emission-volumes corresponding to different wavelengths. And a series of high-speed dispersed emission-image sequences were captured by the ICCD camera. From these sub-microsecond emission-images at different wavelengths, the temporal and spatial propagation behaviors of excited species in the plasma plume were observed clearly
Hydrogen peroxide generation by DC and pulsed underwater discharge in air bubbles
The generation of H(2)O(2) in underwater discharge in air bubbles is studied with consideration of the influence of electrodes polarity, input power, solution conductivity and the inter-electrode distance. The efficiency of hydrogen peroxide generation strongly depends on the polarity, input power and the inter-electrode distance. Discharges in air bubbles with water as a cathode have significantly higher energy yield of hydrogen peroxide in comparison with negative DC or pulsed discharges. The generation of hydrogen peroxide by DC discharge increases with decrease in the inter-electrode distance, but it is opposite for pulsed discharges. Different efficiency of H(2)O(2) production is explained based on physical processes which result to formation of OH radicals
A branching streamer propagation argon plasma plume
Cold atmospheric-pressure plasma plumes have obtained great interests for their attractive features and application potentials. In this paper, a pulsed argon plasma plume was generated in the open air. Characteristic propagation of the argon plasma plume was carried out through high-speed imaging by an ICCD camera. An interesting propagation process was observed for the plasma plume, during which the plasma first propagated in a single streamer channel, and then with side branching as the applied voltage increased. The side branches are generated surrounding the main plasma channel but not split from the anode tip. This branching streamer propagation behavior was much different from the bulletlike development of typical plasma jets or streamers in point-wire or point-plane gaps
- …