35,392 research outputs found

    Thermal reactor

    Get PDF
    A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket

    Lunar landing flight research vehicle Patent

    Get PDF
    Lunar landing flight research vehicl

    Intermittency and Lifetime of the 625 Hz QPO in the 2004 Hyperflare from the Magnetar SGR 1806-20 as evidence for magnetic coupling between the crust and the core

    Get PDF
    Quasi-periodic oscillations (QPOs) detected in the 2004 giant flare from SGR 1806-20 are often interpreted as global magneto-elastic oscillations of the neutron star. There is, however, a large discrepancy between theoretical models, which predict that the highest frequency oscillations should die out rapidly, and the observations, which suggested that the highest-frequency signals persisted for ~100s in X-ray data from two different spacecraft. This discrepancy is particularly important for the high-frequency QPO at ~625 Hz. However, previous analyses did not systematically test whether the signal could also be there in much shorter data segments, more consistent with the theoretical predictions. Here, we test for the presence of the high-frequency QPO at 625 Hz in data from both the Rossi X-ray Timing Explorer (RXTE) and the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) systematically both in individual rotational cycles of the neutron star, as well as averaged over multiple successive rotational cycles at the same phase. We find that the QPO in the RXTE data is consistent with being only present in a single cycle, for a short duration of ~0.5s, whereas the RHESSI data are as consistent with a short-lived signal that appears and disappears as with a long-lived QPO. Taken together, this data provides evidence for strong magnetic interaction between the crust and the core.Comment: Accepted for publication in ApJ. The data and simulations are available at http://figshare.com/articles/SGR_1806_20_Giant_Flare_Data_and_Simulations/1126082 , the code can be downloaded from https://github.com/dhuppenkothen/giantflare-paper , some documentation is under http://nbviewer.ipython.org/github/dhuppenkothen/giantflare-paper/blob/master/documents/giantflare-analysis.ipyn

    Inverse spectral results for Schr\"odinger operators on the unit interval with potentials in L^P spaces

    Full text link
    We consider the Schr\"odinger operator on [0,1][0,1] with potential in L1L^1. We prove that two potentials already known on [a,1][a,1] (a(0,1/2]a\in(0,{1/2}]) and having their difference in LpL^p are equal if the number of their common eigenvalues is sufficiently large. The result here is to write down explicitly this number in terms of pp (and aa) showing the role of pp

    Nucleation of Spontaneous Vortices in Trapped Fermi Gases Undergoing a BCS-BEC Crossover

    Full text link
    We study the spontaneous formation of vortices during the superfluid condensation in a trapped fermionic gas subjected to a rapid thermal quench via evaporative cooling. Our work is based on the numerical solution of the time dependent crossover Ginzburg-Landau equation coupled to the heat diffusion equation. We quantify the evolution of condensate density and vortex length as a function of a crossover phase parameter from BCS to BEC. The more interesting phenomena occur somewhat nearer to the BEC regime and should be experimentally observable; during the propagation of the cold front, the increase in condensate density leads to the formation of supercurrents towards the center of the condensate as well as possible condensate volume oscillations.Comment: 5 pages, 3 figure

    A 6-INCH SUBSONIC HIGH-TEMPERATURE ARC TUNNEL FOR STRUCTURES AND MATERIAL TESTS

    Get PDF
    Subsonic high temperature arc heated wind tunnel tests for structural material

    Coulomb Glasses: A Comparison Between Mean Field and Monte Carlo Results

    Full text link
    Recently a local mean field theory for both eqilibrium and transport properties of the Coulomb glass was proposed [A. Amir et al., Phys. Rev. B 77, 165207 (2008); 80, 245214 (2009)]. We compare the predictions of this theory to the results of dynamic Monte Carlo simulations. In a thermal equilibrium state we compare the density of states and the occupation probabilities. We also study the transition rates between different states and find that the mean field rates underestimate a certain class of important transitions. We propose modified rates to be used in the mean field approach which take into account correlations at the minimal level in the sense that transitions are only to take place from an occupied to an empty site. We show that this modification accounts for most of the difference between the mean field and Monte Carlo rates. The linear response conductance is shown to exhibit the Efros-Shklovskii behaviour in both the mean field and Monte Carlo approaches, but the mean field method strongly underestimates the current at low temperatures. When using the modified rates better agreement is achieved

    Flame Propagation on the Surfaces of Rapidly Rotating Neutron Stars during Type I X-ray Bursts

    Get PDF
    We present the first vertically resolved hydrodynamic simulations of a laterally propagating, deflagrating flame in the thin helium ocean of a rotating accreting neutron star. We use a new hydrodynamics solver tailored to deal with the large discrepancy in horizontal and vertical length scales typical of neutron star oceans, and which filters out sound waves that would otherwise limit our timesteps. We find that the flame moves horizontally with velocities of order 10510^5 cm s1^{-1}, crossing the ocean in few seconds, broadly consistent with the rise times of Type I X-ray bursts. We address the open question of what drives flame propagation, and find that heat is transported from burning to unburnt fuel by a combination of top-to-bottom conduction and mixing driven by a baroclinic instability. The speed of the flame propagation is therefore a sensitive function of the ocean conductivity and spin: we explore this dependence for an astrophysically relevant range of parameters and find that in general flame propagation is faster for slower rotation and higher conductivity.Comment: Accepted for publication by MNRA

    Rotational effects in thermonuclear Type I Bursts: equatorial crossing and directionality of flame spreading

    Get PDF
    In a previous study on thermonuclear (type I) nursts on accreting neutron stars we addressed and demonstrated the importance of the effects of rotation, through the Coriolis force, on the propagation of the burning flame. However, that study only analysed cases of longitudinal propagation, where the Coriolis force coefficient 2Ωcosθ2\Omega\cos\theta was constant. In this paper, we study the effects of rotation on propagation in the meridional (latitudinal) direction, where the Coriolis force changes from its maximum at the poles to zero at the equator. We find that the zero Coriolis force at the equator, while affecting the structure of the flame, does not prevent its propagation from one hemisphere to another. We also observe structural differences between the flame propagating towards the equator and that propagating towards the pole, the second being faster. In the light of the recent discovery of the low spin frequency of burster IGR~J17480-2446 rotating at 11 Hz (for which Coriolis effects should be negligible) we also extend our simulations to slow rotation.Comment: Accepted for publication by MNRA
    corecore