11 research outputs found

    An exploration of amyloid-β seeding in mouse models of dementia

    Get PDF
    Alzheimer’s disease (AD) is characterized by the prion-like propagation of misfolded proteins that appears dependent on the initial accumulation of amyloid-β (Aβ). But the role of Aβ in cognitive impairment is still unclear. To determine the causal role of Aβ in AD, mouse models expressing pathological features of AD were intracerebrally seeded with Aβ. Behavioural and immunohistochemical techniques were used to assess the effects of seeding. Seeding was found to increase Aβ plaque deposition and microgliosis throughout the brain after a brief inoculation period. The effect was dependent on the presence of specific knocked-in genes. Seeding was also found to increase the presence of tau hyperphosphorylation in isolated parts of the brain. Yet, no significant correlation between pathology and memory was found. In summary, large increases in Aβ plaque and microgliosis do not initially cause cognitive impairment. Suggesting other underlying disease processes may be driving cognitive decline in AD

    Addiction, treatment, and evidence-based medicine

    Get PDF
    How addiction is conceived has important practical implications for how addicts are to be treated. This paper argues that we have a horrible concept of addiction and that has led to horrible treatment results. Examining this concept’s history will show that its main components (especially the brain disease view and the loss of control hypotheses) were invented or assumed by social reformers about 200 years ago, and that they do not map onto the physical world in a rich and systematic fashion. Science has been used to promote these assumptions instead of ever substantively establishing them. There are treatment methods that have been shown to be effective, but these are rarely employed in standard practice. Instead, addicts are provided with interventions that have been shown to be ineffective. Continuing to offer addicts treatment modalities that do not work when there are interventions with proven efficacy, is medical malpractice

    The IRMA III control and communication system

    Get PDF
    xi, 193 leaves : ill. ; 28 cm.The IRMA III infrared radiometer is a passive atmospheric water vapor detector designed for use with interferometric submillimeter arrays as a method of phase correction. The IRMA III instrument employs a distributed, multi-tasking software control system permitting precise fine-grained control at remote locations over a low-bandwidth network connection. IRMA's software is divided among three processors tasked with performing three primary functions: command interpretation, data collection and motor control of IRMA's Alt-Az mount. IRMA's hardware control and communication functionality is based on compact, low cost, energy efficient Rabbit 2000 microcontroller modules, selected to meet IRMA's limited space and power requirements. IRMA accepts scripts defined in a custom, high level control language as its method of control, which the operator can write or dynamically generated by a separate GUI front-end program

    Toxicity of weathered sediment-bound dilbit to freshwater fish and invertebrates

    Get PDF
    Bitumen from the Alberta oil sands must be diluted to form diluted bitumen (dilbit) to facilitate transport through pipelines, yet little is known about its effects on aquatic organisms after a spill. Environmental weathering processes such as evaporation and sediment interaction manipulate spilled dilbit, which could affect its fate and toxicity in the environment. However, most studies to date that have characterized effects of dilbit to aquatic organisms have not incorporated weathering. In the present study, zebrafish (Danio rerio) embryos and adult freshwater amphipods (Hyalella azteca) were exposed to weathered sediment-bound dilbit. Sediment-bound dilbit exacerbated adverse effects associated with dilbit exposure due to oil-mineral aggregates directly interacting with amphipods and zebrafish embryos during exposure. As oil sands production expands, it is important to incorporate weathering processes when testing the toxicity of dilbit to aquatic organisms because sediment-bound dilbit can severely affect the health of freshwater fish and invertebrates

    On the Use of Carbon Cables from Plastic Solvent Combinations of Polystyrene and Toluene in Carbon Nanotube Synthesis

    Get PDF
    For every three people on the planet, there are approximately two Tonnes (Te) of plastic waste. We show that carbon recovery from polystyrene (PS) plastic is enhanced by the coaddition of solvents to grow carbon nanotubes (CNTs) by liquid injection chemical vapour deposition. Polystyrene was loaded up to 4 wt% in toluene and heated to 780 °C in the presence of a ferrocene catalyst and a hydrogen/argon carrier gas at a 1:19 ratio. High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Raman spectroscopy were used to identify multiwalled carbon nanotubes (MWCNTs). The PS addition in the range from 0 to 4 wt% showed improved quality and CNT homogeneity; Raman "Graphitic/Defective" (G/D) values increased from 1.9 to 2.3; mean CNT diameters increased from 43.0 to 49.2 nm; and maximum CNT yield increased from 11.37% to 14.31%. Since both the CNT diameters and the percentage yield increased following the addition of polystyrene, we conclude that carbon from PS contributes to the carbon within the MWCNTs. The electrical contact resistance of acid-washed Bucky papers produced from each loading ranged from 2.2 to 4.4 Ohm, with no direct correlation to PS loading. Due to this narrow range, materials with different loadings were mixed to create the six wires of an Ethernet cable and tested using iPerf3; the cable achieved up- and down- link speeds of ~99.5 Mbps, i.e., comparable to Cu wire with the same dimensions (~99.5 Mbps). The lifecycle assessment (LCA) of CNT wire production was compared to copper wire production for a use case in a Boeing 747-400 over the lifespan of the aircraft. Due to their lightweight nature, the CNT wires decreased the CO footprint by 21 kTonnes (kTe) over the aircraft's lifespan

    Characterisation of the morphology of surface-assembled Au nanoclusters on amorphous carbon

    Get PDF
    In this study, aberration-corrected scanning transmission electron microscopy is employed to investigate the morphology of Au clusters formed from the aggregation of single atoms sputtered onto an amorphous carbon surface. The morphologies of surface-assembled clusters of N > 100 atoms are referenced against the morphologies of size-selected clusters determined from previously published results. We observe that surface-assembled clusters (at the conditions employed here) are approximately spherical in shape. The structural isomers of the imaged clusters have also been identified, and the distribution of structural types is broadly in agreement with those from size-selected cluster deposition sources. For clusters of approximately 147 atoms, we find a preference for icosahedra over decahedra and truncated octahedra, but at this size there is a high proportion of unidentified/amorphous structures. At around 309 atoms, we find a preference for decahedra over icosahedra and truncated octahedra, but over half the structures remain unidentifiable/amorphous. For sizes above approximately 561 atoms we are able to identify most of the structures, and find decahedra are still the most favoured, although in competition with single-crystal fcc morphologies. The similarity in structure between surface-assembled and size-selected clusters from a cluster source provides evidence of the relevance of size-selected cluster studies to clusters synthesised by other, industrially relevant, methodologies

    Influence of air exposure on structural isomers of silver nanoparticles

    Get PDF
    Up to date, the influence of ambient air exposure on the energetics and stability of silver clusters has rarely been investigated and compared to clusters in vacuum. Silver clusters up to 3000 atoms in size, on an amorphous carbon film, have been exposed to ambient air and investigated by atomic-resolution imaging in the aberration-corrected Scanning Transmission Electron Microscope. Ordered structures comprise more than half the population, the rest are amorphous. Here, we show that the most common ordered isomer structures is the icosahedron. These results contrast with the published behaviour of silver clusters protected from atmospheric exposure, where the predominant ordered isomer is face-centred cubic. We propose that the formation of surface oxide or sulphide species resulting from air exposure can account for this deviation in stable isomer. This interpretation is consistent with density functional theory calculations based on silver nanoclusters, in the size range 147-201 atoms, on which methanethiol molecules are adsorbed. An understanding of the effects of ambient exposure on the atomic structure and therefore functional properties of nanoparticles is highly relevant to their real-world performance and applications

    On the Use of Carbon Cables from Plastic Solvent Combinations of Polystyrene and Toluene in Carbon Nanotube Synthesis

    Get PDF
    For every three people on the planet, there are approximately two Tonnes (Te) of plastic waste. We show that carbon recovery from polystyrene (PS) plastic is enhanced by the coaddition of solvents to grow carbon nanotubes (CNTs) by liquid injection chemical vapour deposition. Polystyrene was loaded up to 4 wt% in toluene and heated to 780 °C in the presence of a ferrocene catalyst and a hydrogen/argon carrier gas at a 1:19 ratio. High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Raman spectroscopy were used to identify multiwalled carbon nanotubes (MWCNTs). The PS addition in the range from 0 to 4 wt% showed improved quality and CNT homogeneity; Raman “Graphitic/Defective” (G/D) values increased from 1.9 to 2.3; mean CNT diameters increased from 43.0 to 49.2 nm; and maximum CNT yield increased from 11.37% to 14.31%. Since both the CNT diameters and the percentage yield increased following the addition of polystyrene, we conclude that carbon from PS contributes to the carbon within the MWCNTs. The electrical contact resistance of acid-washed Bucky papers produced from each loading ranged from 2.2 to 4.4 Ohm, with no direct correlation to PS loading. Due to this narrow range, materials with different loadings were mixed to create the six wires of an Ethernet cable and tested using iPerf3; the cable achieved up- and down- link speeds of ~99.5 Mbps, i.e., comparable to Cu wire with the same dimensions (~99.5 Mbps). The lifecycle assessment (LCA) of CNT wire production was compared to copper wire production for a use case in a Boeing 747-400 over the lifespan of the aircraft. Due to their lightweight nature, the CNT wires decreased the CO2 footprint by 21 kTonnes (kTe) over the aircraft’s lifespan.We would like to thank Keysight Technologies for the use of a test model of the B2900A SMU. We would like to acknowledge the assistance provided by Swansea University College of Engineering AIM Facility. We would like to thank TRIMTABS Ltd. for purchasing equipment required for making ethernet cables. Thanks to Swansea Employability Academy (SEA) for the summer placements scheme. Thanks to the Swansea University Texas Strategic Partnership. R.E.P. acknowledges his work was associated with the IMPACT operation. We acknowledge pixabay for use of imagery in the graphical abstract (https://pixabay.com/vectors/airplane-boeing-747-transport-48 11157/ (accessed on 1 December 2021))

    From our sex to our souls : directing Michel Marc Bouchard’s The Madonna painter

    Get PDF
    Michel Marc Bouchard calls his play, . a parable of lies disguised as a fable; writ in scarlet pigment, in holy wine and hemoglobin, all the shades of red that flow through us from our sex to our souls (9).” Using these vivid statements as a starting point, I explore my process, inspiration, concepts and choices for the University of Lethbridge production of The Madonna Painter, March 20 to 24, 2012, in partial fulfillment for the degree Master of Fine Arts

    Stabilization of 2D raft structures of Au nanoclusters with up to 60 atoms by a carbon support

    Get PDF
    Herein, the stabilization of 2D single‐atom high gold rafts containing up to ≈60 Au atoms on amorphous carbon, fabricated by sputtering of atoms and imaged by aberration‐corrected scanning transmission electron microscopy, is demonstrated. These rafts deviate from the established cluster transition from 2D to 3D Au structural motifs in free clusters, which occurs in the region of 10–14 atoms. The experimental findings by performing explicit ab initio calculations of Au n (n = 3–147) clusters on graphene are supported and the role of cluster–surface interactions in the stabilization of the 2D single‐atom high Au cluster rafts on graphene is revealed. The transition from equilibrium 2D–3D structures is delayed to n = 19, while metastable 2D single‐atom high rafts compete with 3D structures up to about n = 60 atoms. The catalytic activity of supported nanoclusters depends strongly on their structure (and carbon‐based supports are used for a number of reactions); therefore these results are relevant to the catalytic performance of nanocluster‐based catalysts
    corecore