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ABSTRACT 
 
 
 

Bitumen from the Alberta oil sands must be diluted to form diluted bitumen 

(dilbit) to facilitate transport through pipelines, yet little is known about its effects on 

aquatic organisms after a spill. Environmental weathering processes such as evaporation 

and sediment interaction manipulate spilled dilbit, which could affect its fate and toxicity 

in the environment. However, most studies to date that have characterized effects of dilbit 

to aquatic organisms have not incorporated weathering. In the present study, zebrafish 

(Danio rerio) embryos and adult freshwater amphipods (Hyalella azteca) were exposed to 

weathered sediment-bound dilbit. Sediment-bound dilbit exacerbated adverse effects 

associated with dilbit exposure due to oil-mineral aggregates directly interacting with 

amphipods and zebrafish embryos during exposure. As oil sands production expands, it is 

important to incorporate weathering processes when testing the toxicity of dilbit to 

aquatic organisms because sediment-bound dilbit can severely affect the health of 

freshwater fish and invertebrates.  
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 Canadian oil sands  
 

The Alberta oil sands contain an estimated 50 billion m3 of recoverable bitumen, 

an oil reserve surpassed only by Saudi Arabia and Venezuela (National Energy Board, 

2006). There are 15 deposits of bitumen located in Alberta within three major regions: 

Athabasca, Cold Lake and Peace River (Hein and Cotterill, 2006). The Athabasca region 

produces the most bitumen due to the high abundance of surface mineable material 

residing in the Wabiskaw-MacMurray deposit (Alberta Energy and Utilities Board, 2005). 

The remaining extractable bitumen in the latter two regions and other areas of the 

Athabasca is found at depths greater than 75 m and is removed with in situ mining, where 

steam or solvents are pumped into the deposits to decrease bitumen viscosity so that it can 

be pumped to the surface (Read and Whiteoak, 2003).   

Canada ranks 6th in the world in oil production and produces 4.2 million 

barrels/day, of which oil sands comprise 63% (CAPP, 2018). Although it is more 

energetically costly than conventional oil production, extraction of bitumen is expected to 

increase from the current 2.69 million barrels/day to 4.19 million barrels/day by 2035 

(Huot and Grant, 2012; CAPP, 2018). Canada is projected to become more dependent on 

oil sands in the future; by 2035 bitumen is expected to comprise 75% of total Canadian 

oil production (CAPP, 2018). The development of new pipelines such as the Keystone 

XL and the Kinder Morgan Transmountain expansion will facilitate export of the 

increasing volume of bitumen but are also in close proximity to thousands of freshwater 

environments, including critical salmon habitat in British Columbia (Levy et al., 2009; 

NASEM, 2015). From 1984 – 2003, the 43,000 km of pipeline monitored by the 

Canadian National Energy Board had an average of 2.3 ruptures per year and it is 
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estimated that, on average, new pipelines rupture after 28 years (Jeglic, 2004). Although 

pipelines are the safest and most efficient method of transporting bitumen and the rate of 

pipeline ruptures decreases as new monitoring and construction technology emerges, 

spills from pipelines remain of environmental concern.  

Bitumen is an ‘unconventional’ oil that is a semi-solid at atmospheric pressure and 

room temperature, making transport through pipelines impractical before it is diluted (Lee 

et al., 2015). Thus, in order for bitumen to be transported via pipelines, it is diluted with 

natural gas condensates such as naphtha (20-30% condensate; 70-80% bitumen) after it is 

separated from the sand to form ‘dilbit’, making it suitable for transport through pipelines 

(Crosby et al., 2013). Some bitumen undergoes coking or hydrolysis and is then mixed 

with synthetic oil at a 1:1 ratio to create synthetic dilbit or ‘synbit’ (Crosby et al., 2013). 

The chemical and physical properties of dilbits can be highly variable based on the blend 

(composition of dilutents), location of extraction and the season it is being transported 

(Crude Monitor, 2019).  

 

1.2 History of dilbit spills in North America  

The largest dilbit spill in history occurred in 2010, when Enbridge line 6b ruptured 

into Talmadge Creek in Marshall, Michigan and eventually flowed into the Kalamazoo 

River (US Fish and Wildlife, 2015). In total, 3191 m3 of dilbit was released, resulting in 

$767 million in clean-up costs (as of October 2011) – the most expensive inland oil spill 

in history (NTSB, 2012). At the time of the spill, there was no available literature on the 

toxicological effects of dilbit on aquatic organisms. This spill exemplified the importance 

of physical weathering processes (discussed in detail later), as an estimated 10-30% of the 

spilled dilbit combined with suspended solids and sank, making the dilbit more accessible 
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to some aquatic organisms (USEPA, 2013a; US Fish and Wildlife, 2015). Smallmouth 

bass (Micropterus dolomieu) and golden redhorse (Moxostoma erythrurum) collected 14 

km downstream of the release were found to have reduced condition factors, high 

hepatosomatic indices, high rates of lesions/abnormalities, spleen fibrosis and induction 

of cytochrome P450 1A (cyp1a) (Papoulias et al., 2014). Dilbit-contaminated sediments 

from the spill were collected and found to inhibit growth and survival of freshwater 

amphipods (Hyalella azteca) and freshwater midges (Chironomus dilutus)  (GLEC, 

2012). The Enbridge line 6a ruptured two months later in Romeoville, Illinois, spilling 

970 m3 of dilbit (EPA, 2012). Enbridge paid $177 million in settlements for damages 

caused by these two spills (MLive, 2016).  

There have been several other significant oil sands related pipeline spills in North 

America prior to and after the Kalamazoo River disaster (Crosby et al., 2013). In 2007, an 

excavator struck a pipeline operated by Kinder Morgan in Burnaby, BC, spilling 234 m3 

of synthetic crude derived from bitumen (TSB, 2008). The synthetic crude then flowed 

into Burrard Inlet, covering 1200 m of shoreline and resulting in $15 million in clean-up 

costs (CBC, 2011). The TransCanada Keystone pipeline’s first year of operation in 2010 

resulted in 35 spills of oil sands products – 100 times the projected frequency of spills 

(Skinner and Sweeney, 2012).  However, the largest of the 35 spills was an 80 m3 dilbit 

spill in Ludden, North Dakota (Crowl, 2011). An ExxonMobil pipeline in Mayflower, 

Arkansas, ruptured in 2013 as the result of a construction mistake in the original pipeline, 

spilling an estimated 318 m3 – 795 m3 of dilbit (Dupre, 2013; USEPA, 2013b). The most 

recent spill of dilbit came from the keystone pipeline in 2017, where 795 m3 was spilled 

beneath South Dakota farmland (NTSB, 2018). In many of these cases, it was unknown 

that the spilled oil was bitumen-derived until days after the release (Crosby et al., 2013). 
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This lack of communication could have resulted in greater environmental damage, as the 

clean-up response in the first days following the spill is extremely important and should 

be specific to the type of spilled oil.  

Evidently, pipelines that transport oil sands products fail for a number of reasons. 

Certain reports have speculated that dilbit pipelines pose a higher risk of failure due to the 

high abundance of sulphur and total acids in dilbit (Stansbury, 2011; Skinner and 

Sweeney, 2012). However, the most important factor in pipeline corrosion is water 

content, and because dilbit has similar water content to conventional oils, it therefore 

poses no greater corrosion risk (Zhou and Been, 2011; Dettman, 2012).  

 

1.3 Chemical composition of dilbit   

The chemical composition of crude oils often is described as “super complex”. 

The four main chemical components of crude oils are saturates, aromatics, resins and 

asphaltenes (Yang et al., 2014; Fingas, 2011; Lee et al., 2015). Less abundant 

components include metals, inorganic sulphur and constituents with nitrogen, sulphur and 

oxygen heteroatoms (N, S, O) (Woods et al., 2008; Fingas, 2011; Lee et al., 2015). 

Saturated hydrocarbons are the most abundant constituent in conventional crude oils and 

are the most biodegradable (Woods et al., 2008, Lee et al., 2015). Saturates are generally 

non-toxic, but some cyclo-alkanes can cause narcosis by accumulating in lipid 

membranes and disrupting membrane structure and function (Sikkema et al., 1995; 

Adams et al., 2014). The aromatic fraction includes single-ringed benzene, toluene, 

xylenes and ethyl benzene (BTEX) and polycyclic aromatic hydrocarbons (PAHs) 

(Fingas, 2011; Lee et al., 2015). With the exception of some light crudes, aromatics are 

present in similar abundances across crude oil types (Woods et al., 2008). The toxicity of 
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crude oils to aquatic organisms is primarily attributed to PAHs and their alkylated 

derivatives and is discussed in detail later (Ball and Truskewycz, 2013; Adams et al., 

2014). Resins and asphaltenes are non-biodegradable, water-insoluble and most prevalent 

in heavy crude oils (Woods et al., 2008; Fingas, 2011; Lee et al., 2015). Resins and 

asphaltenes contain N, S and O, but asphaltenes are of considerably higher molecular 

weight (Speight, 2002). Crude oils with high proportions of resins and asphaltenes have 

high densities, viscosities and adhesiveness (Speight, 2002; Akmaz et al., 2011; Fingas, 

2011; Lee et al., 2015).  

Dilbit has a different chemical composition than conventional crude oils because 

most of the biodegradable components were removed under anaerobic conditions present 

in the oil sands (Table 1-1) (NASEM, 2015). Saturates in dilbit are highly reduced 

compared to conventional oils and are skewed towards cyclo-alkanes that resist 

degradation (Woods et al., 2008; NASEM, 2015). The aromatic fraction of dilbit favours 

tricyclic PAHs and high degrees of alkylation, as these resist degradation (Yang et al., 

2011; Environment Canada, 2013a). Indeed, dilbit contains greater abundances of 

dibenzothiophene, fluorene and chrysene compared to conventional oils but generally has 

similar or lower total PAH concentrations (Wang et al., 2003; Yang et al., 2011; Yang et 

al., 2014). The BTEX content of dilbit is comparable to heavy conventional oils and is 

solely the result of added diluents. Dilbit contains large proportions of resins and 

asphaltenes, which can influence the behaviour and persistence of dilbit after a spill into 

an aquatic environment (Woods et al., 2008; NASEM, 2015).  
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Table 1-1 Chemical properties of major crude oil types.  
 
 Light Crude 

(Scotia 
Light) 

Medium Crude 
(West Texas 

Intermediate) 

Heavy Crude 
(Sockeye Sour) 

Dilbit (Cold 
Lake Blend 

Saturates (%) 92 66 38 25 
Aromatics (%) 8 26 29 22 
Resins (%) 1 6 20 33 
Asphaltenes (%) 0 1 13 20 
Sulphur (%) 0.02 0.48 4.41 3.78 
BTEX (%) 0.2379 0.964 0.6748 0.7100 
Total PAHs 
(µg/g) 

3504 7947 5231 5384 

(Wang et al., 2003; Yang et al., 2011; Yang et al., 2014; Hollebone, 2015; Crude 
Monitor, 2019; Environment Canada, 2019) 
 

1.4 Physical properties of dilbit  

 The density, adhesion and viscosity of dilbit can differ from conventional oils 

(NASEM, 2015). Differences in physical properties are important because they can 

influence the behaviour of crude oil after a spill (NASEM, 2015). Undiluted bitumen is 

the only crude oil that is dense enough to sink in freshwater, but due to its high viscosity 

it is not transported through pipelines. Dilbit has physical properties most comparable to 

heavy crude oils due to the high proportion of resins and asphaltenes. Physical properties 

of major oil types are summarized in Table 1-2. 
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Table 1-2 Physical properties of major crude oil types at 15°C. 

 Light crude 
(Scotia 
Light) 

 

Medium crude 
(West Texas 

Intermediate) 
 

Heavy 
Crude 

(Sockeye 
Sour) 

 

Bitumen 
(Cold Lake) 

 

Dilbit (Cold 
Lake 

Blend) 

Density 
(g/mL) 
 

0.7655 0.8420 0.9409 1.0002 0.9172 

API gravity  
 

53.2 36.4 18.8 9.8 21.3 

Viscosity 
(mPa•s) 
 

1 7 821 235000 150 

Adhesion 
(g/cm2) 

0 15 75 575 98 

(Wang et al., 2003; Yang et al., 2011; Yang et al., 2014; Hollebone, 2015; Crude 
Monitor, 2019; Environment Canada, 2019) 
 

1.5 Environmental weathering  

 Spilled dilbit undergoes a myriad of environmental processes known as 

‘weathering’ that influence its behaviour and toxicity to aquatic organisms (NASEM, 

2015). Physical weathering processes include dispersion, emulsification, spreading, 

evaporation and sedimentation, whereas chemical weathering encompasses 

photooxidation and biodegradation (Environment Canada, 2013a; Lee et al., 2015; 

NASEM, 2015). Weathering processes have the potential to exacerbate and/or ameliorate 

environmental damage caused by dilbit spills.  

 Dilbit can lose up to 30% of its mass due to evaporation after a spill because the 

added diluents are low molecular weight and extremely volatile (Environment Canada, 

2013a). Evaporation increases the density, viscosity and adhesiveness of dilbit by 

increasing the proportion of resins and asphaltenes (Yang et al., 2014). The density of 

evaporated dilbit can approach 1 g/mL, but this does not necessarily translate to sinking 
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in freshwater (Environment Canada, 2013a; Yarranton et al., 2015). Heavily evaporated 

dilbit is extremely viscous, which limits dispersion and therefore can prevent sinking, as 

large masses—such as tarballs—are less likely to sink than small droplets (Zhou et al., 

2015). One flume tank study that simulated a spill showed that dilbit can sink in 20 

practical salinity unit (psu) brackish water after six days of evaporation (King et al., 

2014), but other similar studies report that dilbit will remain floating or entrained in the 

water column with evaporation alone (SL Ross, 2012; Zhou et al., 2015). Dispersion also 

creates smaller droplets that increase the release of water-soluble PAHs, highlighting the 

importance of evaporation on the physical fate of spilled dilbit (Nordtug et al., 2011; 

Hansen et al., 2012; Redman et al., 2014).  

Evaporation is an important determinant of the chemical composition, and thus the 

toxicity of spilled dilbit to aquatic organisms (Yang et al., 2018). Weathering (20% mass 

loss) can attenuate the acute and chronic toxicity of the water-accommodated fraction 

(WAF) of dilbit to freshwater fish and invertebrates (Barron et al., 2018; Robidoux et al., 

2018). Attenuation of toxicity of weathered dilbit could be attributed to the loss of highly 

soluble, low molecular weight BTEX, which can be a more accurate predictor of toxicity 

than total concentration of PAHs in zebrafish (Danio rerio) embryos (Philibert et al., 

2016). However, weathering can also increase the potency of dilbit by increasing the 

proportion of tricyclic PAHs (particularly alkyl-PAHs), which are responsible for much 

of the cardiac impairment in fish exposed to crude oils (Carls et al., 1999; Jung et al., 

2013). 

Dilbit can combine with fine sediments to form oil-mineral aggregates (OMAs) 

that sink in freshwater (Environment Canada, 2013a; Waterman and Garcia, 2015; Yang 

et al., 2018). Oil-sediment interactions have been proposed as a beneficial dispersion 



	

	
	

9	

process following spills into aquatic environments (Fitzpatrick et al., 2015), but sunken 

dilbit has the potential to negatively affect benthic and pelagic fish and invertebrates 

(Dew et al., 2015). Dilbit OMAs could bind to appendages and gas exchange structures of 

organisms, or act as a slow release of water-soluble PAHs over time. The Kalamazoo 

River dilbit spill in 2010 exemplified the importance of dilbit-sediment interactions, as an 

estimated 21 ± 12% of the spilled dilbit remained sunken and bound to sediment as of 

2013 (USEPA, 2013a; US Fish and Wildlife, 2015). Contaminated sediments collected 

from the spill in 2013 were acutely lethal to freshwater amphipods (Hyalella azteca) and 

freshwater midges (Chironomus dilutus) (GLEC, 2012).  

 

1.6 Effects of PAHs on fish   

 Polycyclic aromatic hydrocarbons are more genotoxic, carcinogenic and 

teratogenic than other water-soluble oil-derived constituents in dilbit, such as n-alkanes 

(Nam et al., 2008, Adams et al., 2014; Hodson, 2017). Exposure to PAHs can result in 

severe adverse effects in fish that include inhibited growth, early-life stage (ELS) toxicity, 

blue-sac disease (BSD), oxidative stress, behavioural changes, cardiotoxicity, enzymatic 

imbalances and impaired reproduction. There is an abundance of information on the 

toxicity of individual PAHs and PAH mixtures such as conventional crude oils to fish, 

which will be partially drawn from for this review due to the lack of available literature 

on the toxic effects of dilbit.  

 

1.6.1 Aryl-hydrocarbon mediated detoxification of PAHs  

 Increased expression of cytochrome P450 1A (CYP1A) mediated by 

activation of the aryl hydrocarbon receptor (AhR) precedes ELS toxicity in fish and is the 
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major detoxification pathway of PAHs (Brinkworth et al., 2003; Hodson, 2017). Planar 

PAHs with three or more rings enter through the cell membrane and bind to the AhR 

complex in the cytoplasm, releasing heat shock protein 90 and AhR interacting protein 

(Basu et al., 2001; Wiseman and Vijayan 2007; Jung et al., 2011). The ligand bound AhR 

translocates to the nucleus and forms a heterodimer with the AhR nuclear translocator 

protein, which then binds to xenobiotic response elements, activating transcription of 

CYP1A and other xenobiotic responsive genes (Fujii-Kuriyama and Kawajiri, 2010). 

Cytochrome P4501A is a phase I enzyme that functionalizes PAHs via processes such as 

hydroxylation and oxygenation (Nebert and Dalton, 2006). Functionalized PAHs are 

modified further by phase II enzymes, resulting in a more water-soluble derivative that is 

effluxed from cells (Nebert and Dalton, 2006). While necessary for detoxification, 

reactive metabolic intermediates can negatively affect cellular function by forming DNA 

adducts, binding directly to proteins, or resulting in the formation of reactive oxygen 

species (ROS) (Miller and Ramos, 2001; Wills et al., 2009; Sturve et al., 2014). 

However, it is understood that greater expression and activity of CYP1A has an overall 

protective effect because its inhibition can lead to an exacerbation of toxicity to ELS of 

fish (Billiard et al., 2006; Billiard et al., 2008). Some PAHs are not AhR agonists and 

therefore are not detoxified by CYP1A and can cause adverse effects directly by non-

polar narcosis in which membrane fluidity and function of membrane proteins, including 

Na+/K+ ATPase transporters, are disrupted (Sikkema et al., 1995; Barron et al., 2004; 

Kennedy and Farrell, 2006). Because dilbit contains a complex mixture of PAHs and 

alkyl-PAHs, there could also be interactions that exacerbate toxicity—such as non-dioxin 

like PAHs being oxygenated due to CYP1A enzyme activity induced by dioxin-like 

PAHs—but currently this is poorly understood (Hodson, 2017). Further, certain PAHs can 
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inhibit CYP1A activity and could therefore lead to accumulation of parent PAHs, as they 

will not be metabolized (Wassenberg and Di Giulio, 2004). Potential toxicity pathways 

following exposure to PAH mixtures such as dilbit are summarized in Fig. 1-1.  

Increased expression of CYP1A is an extensively used biomarker of exposure to 

crude oils because it is extremely sensitive to low concentrations of dioxin-like PAHs. In 

two separate studies, Japanese medaka (Oryzias latipes) embryos exposed to dilbit WAFs 

had >15-fold increases in cyp1a mRNA abundances, which were correlated to the number 

of observed developmental malformations (Madison et al., 2015; Madison et al., 2017). 

Similarly, ELS of sockeye salmon (Oncorhynchus nerka) exposed to the water-soluble 

fraction (WSF) of dilbit had >30-fold increases in cyp1a mRNA abundance (Alderman et 

al., 2018). Sockeye salmon parr exposed to dilbit WSF had >3-fold increases in cyp1a 

mRNA abundance (Alderman et al., 2017). Fathead minnow (Pimephales promelas) and 

yellow perch (Perca flavescens) embryos exposed to dilbit WAF had >40-fold and 16-

fold increases in cyp1a abundance, respectively (Alsaadi et al., 2018b; McDonnell et al., 

2019). Fathead minnow is currently the fish species that shows the greatest induction of 

cyp1a mRNA abundance following exposure to undispersed dilbit WAF. 
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Figure 1-1 Schematic illustration of metabolic and non-metabolic mechanisms of toxicity 
of PAHs. Metabolic mechanisms require functionalization of PAHs to cause toxicity 
catalyzed by CYP1A or AKRs. Metabolic toxicity is AhR-dependent and involves 
metabolic intermediates generated by CYP1A forming DNA adducts or entering redox 
cycling that produces ROS. Alternatively, AKRs can metabolize intermediates generated 
by CYP1A that then enter redox cycling and produce ROS. Non-metabolic mechanisms 
of toxicity do not require functionalization of PAHs. Rather, PAHs can cause toxicity via 
a narcosis mode of action in which they directly solubilize into lipid membranes, 
increasing fluidity and impairing ion homeostasis. There can also be direct impairment of 
K+ and Ca2+ transporters in cardiomyocytes that leads to cardiotoxicity. Separately, 
prolonged activation of AhR2 by PAHs reduces cardiomyocyte proliferation and results 
in cardiotoxicity. Adapted from Gauthier et al. (2014). 
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1.6.2 Embryotoxicity and blue-sac disease  

 The relationship between fish embryotoxicity and PAH concentration is well 

established, with EC50s for PAHs ranging from 0.3 – 2500 µg/L (Carls and Meador, 

2009; Hodson, 2017). Fish early-life stages are particularly vulnerable to aquatic 

toxicants as they are sessile and cannot relocate to uncontaminated areas – which is 

highly relevant to events such as oil spills (Carls et al., 2000). Embryos are often laid atop 

or within sediments, which could contain sediment-bound PAHs and serve as an 

additional route of exposure to water-soluble PAHs (Le Bihanic et al., 2014). Embryos 

also have a reduced ability to metabolize PAHs compared to adults, leading to 

bioaccumulation during tissue differentiation (Peterson and Kristensen, 1998; Carls et al., 

2000; Jung et al., 2015). Further, crude oil exposure can slow development, prolonging 

exposure and susceptibility to mechanical damage because the vitelline membrane is not 

fully developed (Jensen, 1997; Carls and Thedinga, 2010). Adult fish can experience 

latent impaired development as a result ELS exposure to PAHs (Xu et al., 2017; 

Alderman et al., 2018; Vignet et al., 2019). For example, sockeye salmon embryos 

exposed to dilbit WAF had significantly larger brains eight months after being transferred 

to clean water (Alderman et al., 2018). Similarly, fathead minnow embryos exposed to 

bituminous sediments had increased incidences of jaw malformations compared to control 

fish five months after being transferred to clean water (Vignet et al., 2019).  

Exposure to PAHs can increase the incidence of BSD in fish embryos. Blue-sac 

disease is the accumulation of metabolic wastes resulting in craniofacial deformities, 

uninflated swim bladder, spinal curvature, yolk sac and pericardial edemas (Bauder et al., 

2005; Lin et al., 2015; Arens et al., 2017). Blue-sac disease resulting from exposure to 
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crude oils can be explained by the cardiotoxic effects of PAHs and is discussed in detail 

later (Incardona et al., 2004) (Fig. 1-1). Incidences of BSD are associated with high 

mortality, therefore there is potential for ELS exposure to crude oils to have a negative 

impact on fish populations (Marty et al., 1997). 

Embryotoxicity and BSD have been observed in several fish species exposed to 

crude oils, including dilbit. Pacific herring (Clupea pallasi) and pink salmon 

(Oncorhynchus gorbushca) exposed to Alaska North Slope crude oil in response to the 

Exxon Valdez spill had high incidences of BSD and slowed development, which was 

attributed to alkyl-PAHs such as alkyl-phenanthrene (Marty et al., 1997; Carls et al., 

1999). Similarly, incidences of BSD have been observed in rainbow trout (Oncorhynchus 

mykiss), zebrafish (Danio rerio) and Japanese medaka exposed to the individual PAH 

retene – an alkyl-phenanthrene (Billiard et al., 1999; Brinkworth et al., 2003; Alharbi et 

al., 2016). White suckers (Catostomus commersoni) and fathead minnows exposed to 

natural bitumen from the oil sands have also exhibited BSD and significant increases in 

CYP1A expression compared to controls (Colavecchia et al., 2004; Colavecchia et al., 

2006; Vignet et al., 2019). The most common malformation in fish embryos exposed to 

dilbit differs between species. Across several studies, pericardial edemas were the most 

common malformation in fathead minnows and yellow perch (Alsaadi et al., 2018b; 

McDonnell et al., 2019), yolk sac edemas were the most common malformation in 

sockeye salmon and zebrafish embryos (Philibert et al., 2016; Alderman et al., 2018), and 

swim bladder failure were the most common malformation in Japanese medaka (Madison 

et al., 2015; Madison et al., 2017). It is evident that BSD is a consistent effect of exposure 

to multiple crude oil types, although there appear to be species-specific sensitivities. 
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1.6.3 Oxidative stress  

 Oxidative stress has been proposed as a mechanism of toxicity in fish exposed to 

PAHs (Billiard et al., 1999; Almroth et al., 2005) (Fig. 1-1). Some PAHs metabolized by 

CYP1A enter redox cycling that can produce ROS (Burchiel et al., 2007; Bravo et al., 

2011). Additionally, aldo-keto reductase (AKR) enzymes can metabolize PAH-

dihydrodiols created via CYP1A, resulting in o-quinones that enter redox cycling and 

generate ROS (Jiang et al., 2006; Zhang et al., 2012). Reactive oxygen species such as 

O2-•, OH• and H2O2 are normally scavenged by phase II enzymes, but if generated in 

abundance, can damage lipids, proteins and DNA, leading to cell death (Cowey et al., 

1985; Schlenk et al., 2008). Lipid peroxidation (LPO) decreases membrane fluidity and 

results in the formation of unsaturated aldehydes that form DNA adducts (Schlenk et al., 

2008; Tai et al., 2010). The cellular response to ROS includes induction and expression 

of several enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione 

peroxidase (GPx), glutathione-S-transferase (GST) and glutamate-cysteine ligase catalytic 

subunit (GCLC). Superoxide dismutase catalyzes the dismutation of O2-• to H2O2 

(Fridovich, 1995), which can be converted to water and oxygen by CAT (Glorieux and 

Calderon, 2017). The conversion of O2-• to H2O2 can also be catalyzed by GPx, but 

unlike CAT involves converting glutathione (GSH) to glutathione disulphide (Brigelius-

Flohé and Maiorino, 2013). Glutathione S-transferase catalyzes the conjugation of 

electrophilic reactive metabolic intermediates with GSH, allowing them to be excreted 

from the cell (Hayes and Pulford, 1995). Glutamate-cysteine ligase catalytic subunit is the 

rate-limiting enzyme in the formation of GSH and therefore plays an important role in 

many of the mechanisms that reduce cellular ROS (Lu, 2013). Altered expression of 
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oxidative stress response genes and cellular levels of GSH are often used as biomarkers of 

oxidative stress, but do not definitively determine if oxidative stress is present. For 

example, GST expression is upregulated in response to increasing cellular ROS, but is 

also upregulated directly by AhR and is involved in regulating cell death and proliferation 

(Nebert et al., 2000; Laborde, 2010; Brown et al., 2016). 

 Exposure to crude oils could cause increases in cellular ROS, but this response is 

not consistent. Fathead minnow embryos exposed to dilbit had increased expression of 

GST, while expression of other oxidative stress response genes remained unchanged 

(Alsaadi et al., 2018b). One study of dilbit-exposed Japanese medaka embryos reported 

increased expression of SOD and glutathione-disulphide reductase - which catalyzes the 

reduction of glutathione disulphide to GSH (Madison et al., 2015), while another reported 

no change in expression for any oxidative stress response genes (Madison et al., 2017). 

Most recently, a study reported that yellow perch did not have increased expression of 

any oxidative stress genes following exposure to dilbit (McDonnell et al., 2019). 

However, no study of the ELS toxicity of dilbit has directly measured LPO. Further, 

retene-exposed rainbow trout embryos had unchanged concentrations of LPO, but did 

have lower levels of the antioxidants vitamin E and GSH compared to controls (Bauder et 

al., 2004).  

 

1.6.4 Cardiotoxicity   

Impaired cardiac function as a result of exposure to PAHs is the main cause of 

ELS toxicity and BSD in fish (Incardona et al., 2004) (Fig.1-1). Recent research suggests 

that cardiotoxicity following exposure to crude oils can also be AhR-independent, distinct 
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from AhR-dependent cardiotoxicity observed following exposure to organochlorines or 

high molecular weight PAHs (Incardona, 2017).  

AhR-dependent cardiotoxicity from exposure to organochlorines is the result of 

activation of the AhR2 isoform. Prolonged AhR2 activation down-regulates expression of 

genes that are important for cardiomyocyte proliferation and cardiac development, 

resulting in impaired heart looping (the formation of heart chamber differentiation), 

eventually leading to cardiac failure (Antkiewicz et al., 2005; Carney et al., 2006; 

Lanham et al., 2014). Similarly, embryos exposed to high molecular weight PAHs such 

as benzo(a)pyrene exhibit down-regulation of genes involved in calcium handling and 

cell proliferation as a result of prolonged AhR2 activation - similar to effects caused by 

exposure to organochlorines that are potent activators of the AhR (Prasad et al., 2007; 

Jayasundara et al., 2015). Indeed, high molecular weight PAHs induce a dioxin-like 

response, but these constituents are in low concentrations in crude oil WAFs (Carls et al., 

2008; NASEM, 2015).  

The AhR-independent mechanism of cardiotoxicity is dissimilar to dioxin-like 

cardiotoxicity and is caused by tricyclic PAHs directly interfering with the balance of K+ 

and Ca2+ ions in cardiomyocytes (Brette et al., 2014; Brette et al., 2017). Phenanthrene 

can directly block the efflux of K+ ions from the cell, resulting in the inability of the cell 

to re-polarize. Potassium imbalances in cardiomyocytes from exposure to phenanthrene 

resemble exposure to cardiotoxic pharmaceuticals that inhibit ether-a-go-go related gene 

expression: a gene that codes for formation of potassium channels (Langheinrich et al., 

2003). The Ca2+ in the sarcoplasmic reticulum is also depleted directly by tricyclic PAHs, 

impairing the contraction of calcium-dependent myofilaments. Ion imbalances interfere 

with cardiomyocyte excitation-contraction coupling, leading to cardiac arrhythmia, 



	

	
	

18	

reduced contractility and impaired heart looping (Incardona et al., 2004; Incardona et al., 

2009; Zhang et al., 2013; Edmunds et al., 2015; Incardona, 2017).  

Although AhR-dependent and AhR-independent cardiotoxicity proceed via 

distinct modes of action, both lead to a similar phenotype. With respect to crude oil 

exposure, AhR activity does not exacerbate cardiotoxic effects, suggesting that AhR-

independent cardiotoxicity is the dominant mechanism (Incardona et al., 2005). Further, 

isolated myocardial cells can have no AhR activation, but the embryo can still exhibit 

cardiotoxicity following exposure to crude oil, whereas AhR activation is consistently 

present following exposure to high molecular weight PAHs (Incardona et al., 2006; Jung 

et al., 2013; Sørhus et al., 2016). Lack of AhR-dependent cardiotoxicity after exposure to 

crude oil can be explained by the high concentrations of tricyclic PAHs and low 

concentrations of higher molecular weight PAHs in crude oil (NASEM, 2015). However, 

it cannot be ruled out that both mechanisms play a role in cardiotoxicity in ELS exposed 

to crude oils due to the complex mixture of PAHs present.  

Juvenile fish also experience cardiotoxicity following exposure to crude oils. 

Sockeye salmon parr exposed to dilbit WAFs for two weeks experienced cardiac 

remodeling coupled with reduced swimming ability (Alderman et al., 2017). Similarly, 

juvenile herring exposed to North Slope crude oil had lower critical swim speeds than 

controls and recovered slower from exhaustion (Carls et al., 1999). 

 

1.6.5 Behaviour  

Exposure to PAHs causes adverse effects on fish behaviour that are pronounced in 

many species, at a variety of life-stages. Behavioural changes are important as they could 

affect fish migration, reproduction, feeding and predation (Cohen et al., 2001). The sole 
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study that analyzed zebrafish behaviour after exposure to dilbit found that it did not 

impact total distance moved, but did reduce anxiety-like border seeking behaviour 

(thigmotaxis) at 7 dpf (Philibert et al., 2016). Exposure to some PAH mixtures can result 

in reduced activity in ELS of zebrafish (Vignet et al., 2014a) and increased response to 

stimuli as adults (Geier et al., 2018). Similarly, zebrafish fed food spiked with petrogenic 

fractions of crude oil had reduced exploratory behaviours two months post-hatch, and 

increased activity at six months post-hatch (Vignet et al., 2014b). Behavioural alterations 

were also observed in the progeny of zebrafish adults fed a diet spiked with petrogenic 

fractions of crude oil (Vignet et al., 2015). Zebrafish maternal and ELS exposure to crude 

oil WSF induced behavioural alterations, which were attributed to changes in gene 

expression for calcium channels and xenobiotic metabolism (Wang et al., 2018). Finally, 

Caspian roaches (Rutilus caspicus) are able to avoid WSF of crude oil and when exposed 

to it, exhibited a change in feeding behaviour (Lari et al., 2015). Although the underlying 

mechanisms of altered behaviour requires further attention, there is good evidence that 

this sensitive endpoint can be useful in detecting sublethal neurological and 

chemosensory abnormalities following exposure to crude oil (Vignet et al., 2014a; Vignet 

et al., 2014b; Philibert et al., 2016).  

 

1.7 PAH toxicity to invertebrates  

 Polycyclic aromatic hydrocarbons can impact survival and has negative 

developmental, biochemical and reproductive effects on invertebrates. Dibenzothiophene 

and phenanthrene are abundant in crude oils, and low concentrations of either have been 

shown to reduce mate-guarding behaviour—an important reproductive strategy—in 

freshwater amphipods (Satbhai et al., 2017).  Sediments spiked with PAH mixtures were 
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found to be acutely and chronically lethal to pelagic, epibenthic and benthic invertebrates 

and were reported to have synergistic effects compared to individual PAH exposure 

(Verrhiest et al., 2001). However, other studies suggest that the assumption of additivity 

is sufficient in predicting the toxicity of PAH mixtures in invertebrates (Landrum et al., 

2003; Finch and Stubblefield, 2019). Parent PAHs and their metabolites can 

bioaccumulate in invertebrates (Obana et al., 1983; Landrum et al., 2003; Carrasco 

Navarro et al., 2013). Bioaccumulation is important because metabolites of PAHs can 

trophically transfer, which could affect the health of predators of exposed invertebrates 

(Carrasco Navarro et al., 2013).  

To date, little is known about the effects of dilbit on invertebrates. Cladocerans 

(Ceriodaphnia dubia) exposed to Cold Lake Blend (CLB) dilbit WAFs showed 8-day 

LC50s of 6.43 g/L and >32 g/L for fresh and weathered dilbit respectively, while both 

fresh and weathered dilbit WAFs severely reduced reproduction (Robidoux et al., 2018). 

A similar study using cladocerans reported that exposure to weathered CLB dilbit resulted 

in similar or less mortality than exposure to fresh dilbit (Barron et al., 2018). Daphniid 

neonates (Daphnia magna) exposed to dilbit WAF experienced 27% mortality after 48 h 

and increased immobility (Robidoux et al., 2018). Both studies of dilbit weathering 

support the hypothesis that weathering attenuates some of the mortality caused by 

exposure to dilbit.  

There is more research that has investigated effects of conventional crude oils on 

invertebrates than effects of dilbit on invertebrates. Slowed development and interrupted 

molting were observed in copepods exposed to crude oil (Tigriopus japonicas) (Han et 

al., 2014). Crude oil WAF was not acutely toxic to juvenile mud crabs (Rhithropanopeus 

harrisii) unless chemically dispersed (Anderson et al., 2014). Similarly, fresh and 
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weathered oils from the Deep Water Horizon spill were not acutely lethal to echinoderm 

and bivalve larvae unless chemically dispersed (Stefansson et al., 2016). The same Deep 

Water Horizon study found that weathered oil was less toxic than fresh oils, agreeing with 

studies on the toxicity of dilbit (Stefansson et al., 2016). Crude oil exposure can shape the 

composition of invertebrate communities, and has been demonstrated with laboratory 

exposed nematodes (Monteiro et al., 2019) and field-sampled invertebrate communities in 

the oil-sands region (Gerner et al., 2017).  

Significant biochemical changes have been observed in invertebrates exposed to 

PAHs, although there is evidence that they can recover after being transferred to clean 

water (Ruiz et al., 2014). Similar to fish, exposure of the copepod, Tigriopus japonicas, to 

crude oil resulted in increased expression of three CYP genes that contained xenobiotic 

response elements (Han et al., 2014). Notably, there was increased CAT, GSR and GST 

activity and increased cellular GSH, suggesting there was an increase in ROS (Han et al., 

2014). Although this mechanism is less understood in invertebrates, it is likely that CYP 

genes play a role in the detoxification of PAHs, as they do in fish. Crude oil exposure can 

also affect lipid metabolism and protein expression in prawns (Macrobrachium borellii) 

(Lavarías et al., 2007; Pasquevich et al., 2013). Expression of lipocalin-like 

crustacyanin—an exoskeleton pigment—was increased following exposure to crude oil, 

with up to an 8-fold increase in gene expression and up to a 1.9-fold increase in protein 

expression (Pasquevich et al., 2013). Unexpectedly, the expression of the detoxification 

proteins GST and fatty aldehyde dehydrogenase were both down regulated (Pasquevich et 

al., 2013). Individual PAHs can also negatively affect the biochemistry of invertebrates. 

Gauthier et al. (2016) found that phenanthrene can significantly reduce 
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acetylcholinesterase (AChE) activity in freshwater amphipods, leading to irregular 

behaviour and increased respiration as a result of uncontrolled appendage movement 

(Gauthier et al., 2016). This phenotype was remarkably similar to AChE inhibition 

caused by organophosphates, but the exact mechanism requires further attention 

(Gauthier et al., 2016). Explaining PAH toxicity becomes more complex when other 

contaminants—notably metals—are also present; because co-exposure of PAHs and 

metals can elicit more than additive toxicity in freshwater amphipods (Gauthier et al., 

2015).  

 

1.8 Research rationale and objectives  

Effects of conventional crude oils on aquatic organisms are well established, but 

the effects of dilbit on aquatic organisms are only beginning to be characterized. Lack of 

understanding of the effects of dilbit on aquatic organisms is of environmental concern 

due to the growing volume of dilbit being transported in close proximity to freshwater 

throughout North America, and the potential for spills into these systems. 

Despite the rapid increase in the number of studies of toxicity of dilbit to aquatic 

organisms that has occurred in recent years, only two have incorporated weathering and 

none have incorporated sediment interactions (Madison et al., 2015; Philibert et al., 2016; 

Alderman et al., 2017; Madison et al., 2017; Alderman et al., 2018; Alsaadi et al., 2018a; 

Barron et al., 2018; Robidoux et al., 2018; McDonnell et al., 2019). Because dilbit has 

unique physical and chemical properties compared to conventional crude oils, it is 

important to understand how physical processes, such as weathering and interaction with 

sediments, alter the toxicity of dilbit. Further, only two publications have quantified the 
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toxicity of dilbit to invertebrates, which are a vital component of freshwater ecosystems 

(Barron et al., 2018; Robidoux et al., 2018).  

In response to the lack of knowledge surrounding dilbit toxicity, this thesis will 

explore the effects of weathered sediment-bound dilbit (WSD) on the health of freshwater 

amphipods (Hyalella azteca) and ELS of zebrafish (Danio rerio). Freshwater amphipods 

are abundant in freshwater ecosystems in North America and are indicators of aquatic 

health (Environment Canada, 2013b). Freshwater amphipods are model organisms used in 

toxicology and their responses to toxicants such as PAHs are well documented, therefore 

there is opportunity for comparison of this work to previous studies (Environment 

Canada, 2013b; Gauthier et al., 2016). Although not native to North America, zebrafish 

are a model species used extensively in toxicology, and developmental, molecular and 

biochemical responses of ELS of zebrafish to a variety of contaminants, including PAHs, 

have been described in numerous publications (Bambino and Chu, 2017). Using zebrafish 

allows for an in-depth investigation of the underlying biochemical mechanisms of toxicity 

that can then be adapted to native species (Bambino and Chu, 2017).   

The overall objective of this research is to better understand how spills of dilbit 

affect freshwater organisms. To this end, the research will address three specific 

objectives: 

1. Determine if WSD affects adult freshwater amphipods behaviourally and 

biochemically.  

2. Determine if WSD adversely affects zebrafish ELS behaviourally and 

biochemically.  

3. Determine if physical contact with sunken oil-mineral aggregates alters toxicity of 

dilbit to zebrafish and freshwater amphipods.  
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CHAPTER 2: EFFECTS OF WEATHERED SEDIMENT-BOUND DILBIT ON 

FRESHWATER AMPHIPODS (HYALELLA AZTECA) 

 

Abstract 

 

The Alberta oil sands contain over 165 billion barrels of bitumen. Bitumen is 

transported as diluted bitumen (dilbit) after the addition of natural gas condensates. Dilbit 

is transported predominantly through pipelines, which come in close proximity to 

freshwater ecosystems. If dilbit is spilled into or near an aquatic environment, 

environmental weathering processes such as sediment interaction and evaporation 

influence the fate and toxicity of dilbit to aquatic organisms. To date, most studies of the 

effects of dilbit on the health of aquatic organisms have not considered weathering 

processes. Thus, the goal of this study was to assess the toxicity of weathered sediment-

bound dilbit (WSD) to an aquatic organism. Adult freshwater amphipods (Hyalella 

azteca) were exposed to WSD directly or to the water-soluble fraction (WSF) of WSD. 

Direct exposure to WSD resulted in oil-mineral aggregates adhering to the appendages 

and gas exchange structures of amphipods, causing acute lethality. After a 10 min 

exposure, amphipods consumed half as much oxygen and their appendage movement was 

impaired. Exposure to the WSF did not cause acute lethality but did cause small increases 

in respiration and acetylcholinesterase (AChE) activity after 96 h exposure. Results of the 

present study indicate that physical interaction with WSD after a spill of dilbit is a threat 

to benthic invertebrates. As the production of dilbit in North America increases, it is 

imperative that studies incorporate environmental weathering processes when 

determining effects of dilbit on aquatic organisms.  
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2.1 Introduction  

The Alberta oil sands contain an estimated 165 billion barrels of bitumen, which is 

surpassed only by Saudi Arabia and Venezuela (National Energy Board, 2006). Bitumen 

is an ‘unconventional’ oil with a high viscosity and density, making transport through 

pipelines (the safest and most efficient mode of transport) impractical (Lee et al., 2015). 

To overcome this, bitumen is diluted with natural gas condensates (20-30% condensate; 

70-80% bitumen) after it is separated from the sand to form ‘dilbit’, making it suitable for 

transport through pipelines (Crosby et al., 2013). Although mining and upgrading of 

bitumen is more energetically costly than conventional oil, mining of dilbit is expected to 

increase from the current 2.69 million barrels/day to 4.19 million barrels/day by 2035 

(Huot and Grant, 2012; CAPP, 2018). New pipelines such as the Keystone XL and the 

Kinder Morgan Transmountain expansion will increase the volume of dilbit transported in 

pipelines.  However, sections of these pipelines will run in close proximity to thousands 

of freshwater environments, including critical salmon habitat in British Columbia (Levy, 

2009; NASEM, 2015). Despite the threat of spills of dilbit into freshwater ecosystems, 

little is known about the effects of dilbit on aquatic organisms compared to conventional 

oils, particularly invertebrates (Dew et al., 2015; Alsaadi et al., 2018a).   

The toxicity of dilbit has been assessed in aquatic organisms via exposure to the 

water-accommodated fraction (WAF) of dilbit. Dilbit WAFs contain most notably 

polycyclic aromatic hydrocarbons (PAHs), their alkylated relatives and the 

monoaromatics benzene, toluene, ethylbenzene and xylene (BTEX). Cladocerans 

(Ceriodaphnia dubia) exposed to fresh Cold Lake Blend (CLB) dilbit WAFs had an 8-

day LC50 of 6.43 g/L, and exhibited severely impaired reproduction (Robidoux et al., 

2018). A similar study using cladocerans reported a 48 h LC50 of 70.7% for fresh dilbit 
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WAFs with oil loading of 25 g/L (Barron et al., 2018). Daphniid neonates (Daphnia 

magna) exposed to dilbit WAF experienced 27% mortality after 48 h and increased 

immobility (Robidoux et al., 2018). 

Diluents used to enhance the flow of dilbit in pipelines cause dilbit to behave 

differently than conventional oils after a spill (Environment Canada, 2013a; Lee et al., 

2015; NASEM, 2015). Once exposed to the atmosphere, low-molecular weight 

components will evaporate rapidly (Hua et al., 2018), meaning weathering processes have 

the potential to influence the behavior of dilbit in aquatic systems and to influence 

toxicity to aquatic organisms (Dew et al., 2015). Effects of weathering on toxicity of 

dilbit have not been extensively characterized, but studies suggest that weathered dilbit is 

less acutely and chronically toxic to aquatic invertebrates, compared to unweathered dilbit 

(Barron et al., 2018; Robidoux et al., 2018). Attenuation of toxicity as a result of 

weathering has been attributed to the loss of highly soluble, low molecular weight BTEX, 

which can be a more accurate predictor of toxicity than total PAHs in zebrafish (Danio 

rerio) exposed to dilbit (Philibert et al., 2016). However, weathering can also increase the 

potency of dilbit by increasing the proportion of tricyclic PAHs and alkyl-PAHs, which 

are responsible for much of the cardiac impairment in fish following exposure to dilbit 

(Carls et al., 1999; Jung et al., 2013).  

Spilled dilbit can combine with fine sediments either on land or suspended in the 

water-column and form oil-mineral aggregates (OMAs) that are dense enough to sink in 

freshwater (Environment Canada, 2013a; Waterman and Garcia, 2015; Hua et al., 2018). 

The Kalamazoo River dilbit spill in 2010 exemplified the importance of dilbit-sediment 

interactions, as an estimated 21 ± 12% of the spilled dilbit remained sunken and bound to 

sediment as of 2013 (USEPA, 2013a; US Fish and Wildlife, 2015). Oil-sediment 
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interactions have been proposed as a beneficial dispersion process following spills into 

aquatic environments (Fitzpatrick et al., 2015), but sunken dilbit has the potential to 

negatively affect benthic and pelagic fish and invertebrates (Dew et al., 2015). For 

example, contaminated sediments collected two years after the Kalamazoo River dilbit 

spill were acutely toxic to freshwater amphipods (Hyalella azteca) and freshwater midges 

(Chironomus dilutus)  (GLEC, 2012). However, because of an absence of controlled 

laboratory studies, little is known about effects of sediment bound dilbit on aquatic 

organisms. It is known that PAHs can significantly reduce acetylcholinesterase (AChE) 

activity in freshwater amphipods, leading to irregular behaviour and increased respiration 

as a result of uncontrolled appendage movement (Gauthier et al., 2016). Therefore, the 

toxicity of sediment-bound dilbit could be twofold; it could physically impair benthic 

invertebrates by binding to gas exchange structures or appendages and it could be a 

constant source of hydrocarbons released into the water.  

The purpose of this study is to differentiate the physical and chemical effects of 

weathered sediment-bound dilbit (WSD) on the health of the freshwater amphipod, 

Hyalella azteca. Freshwater amphipods were exposed to WSD either directly as a 

substrate or to the water-soluble fraction (WSF) of WSD. This is the first laboratory study 

to assess the toxicity of WSD to an invertebrate and is an important step in determining 

how benthic invertebrates would be affected by sinking dilbit after a spill.   

 

2.2 Methods  

2.2.1 Preparing weathered sediment-bound dilbit 

Dilbit was weathered according to methods described by Fieldhouse et al. (2010) 

and bound to sediment following methods adapted from Environment Canada (2013a) 
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and Waterman and Garcia (2015). The preparation of WSD is outlined in a flowchart in 

Appendix 1 (Fig. A5). In short, 200 mL of fresh Cold Lake Blend (CLB) dilbit was 

weathered on a Buchi-121 rotary evaporator at 135 rpm in an 80ºC water bath for 10 

minutes to produce a 10% mass loss. At the top of the condenser an 8 mm airline was 

inserted, attached to a 9 mm plastic pipette that extended to the top of the evaporation 

flask. The tubing and pipette were attached to a vacuum pump giving positive airflow at a 

rate of 13 L/min. Next, 30 mL aliquots of the weathered dilbit were dispensed into 1 L 

glass bottles with 600 mL of five-salt reconstituted water (SAM-5S) water (Borgmann, 

1996) and 12 g of kaolin (Sigma, Oakville, ON) and allowed to thermally equilibrate for 

4 h in the dark. Sediment loading was double what has previously been used by 

Environment Canada (2013a) because the objective of this study was to create the 

maximum amount of sediment-bound dilbit per volume of dilbit used. Preliminary tests 

showed that doubling the sediment load did not impair the formation of OMAs (Appendix 

1). Bottles were placed horizontally in a culture table shaker and mixed for 16 h in the 

dark at 160 rpm and 23.0ºC. Next, the entire contents of each bottle were transferred to 

one 3 L beaker, the beaker was covered with tin foil, and the contents were allowed to 

settle for 24 h at 23.0°C in the dark. After the OMAs had settled, the overlaying water 

was slowly siphoned and the WSD was collected in amber bottles fitted with TeflonTM 

caps. 

 

2.2.2 Amphipod culture  

 Amphipod cultures were maintained in 50 L tanks with 30 L of SAM-5S water at 

23.0°C on a 16 h light:8 h dark schedule. Amphipods were fed 0.1 - 0.12 g of ground 
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TetraminTM three times per week. Cotton gauze bandages were placed at the bottom of 

the tanks to serve as a substrate. One 50% water change and one 80% water change was 

performed weekly. Two 122 cm fluorescent bulbs, emitting 2000 lux at the water surface, 

provided lighting.  

Adult amphipods were sorted with a 700 µm nylon mesh and used for all toxicity 

tests. Adults were used to ensure video tracking and behavioural analysis would be 

possible. Amphipods were kept in 1 L beakers with 800 mL of SAM-5S water (100 

amphipods/beaker), gauze bandage and 0.05 g of ground TetraminTM for 48 h prior to 

exposure. Amphipods were selected two at a time and randomly assigned to a treatment. 

All exposures were conducted at 23.0°C with a light intensity of 2000 lux.  For 96 h 

exposures, daily temperature and dissolved oxygen were monitored, while alkalinity, 

hardness, pH and ammonia were recorded at 0 and 96 h only.  

 

2.2.3 Effect of weathered sediment-bound dilbit on acute lethality 

Adult amphipods were exposed for 96 h to WSD as a substrate with methods 

adapted from Environment Canada (2013b). Exposures were performed in 300 mL tall 

form beakers, with 200 mL of SAM-5S water and 30 mL of sediment. Treatments were 

made by serially diluting WSD with uncontaminated kaolin. Treatments were 100%, 

50%, 25%, 12.5%, 6.25%, 3.13%, 1.56%, 0.78% and 0% WSD by volume with three 

replicates for each treatment. Prepared sediments were added to the exposure beakers and 

allowed to settle for 24 h before adding 10 amphipods to each vessel. Beakers were 

covered but not sealed to facilitate gas exchange. At 96 h, survival was assessed. 
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2.2.4 Physical interaction with weathered sediment-bound dilbit  

To assess how amphipods were affected immediately after physically interacting 

with WSD, they were exposed directly to WSD for 10 minutes. In a glass petri dish, 50 

mL of SAM-5S water and 1 mL of WSD was added, gently mixed, and WSD particles 

were allowed to settle for 1 h. For a control, 50 mL of SAM-5S water and 1 mL of kaolin 

was used. Next, 10 amphipods were added to each petri dish and exposed for 10 minutes. 

This amount of time was determined in preliminary tests to ensure amphipods sufficiently 

interacted with the sediment but a short enough duration that did not cause lethality. After 

10 minutes, pleopod beating frequency, behaviour and respiration were assessed. All 

exposures were replicated eight times. 

 

2.2.5 Pleopod beating frequency  

Two amphipods per replicate were randomly assessed for pleopod beating 

frequency assessment following methods from Gauthier et al. (2016).  Pleopod movement 

was measured because pleopods direct water over the gills primarily for respiration. 

Amphipods were placed in a welled slide with a drop of SAM-5S water void of particles 

to facilitate video recording and a coverslip was gently placed on top of the amphipod to 

restrict body movement but allow pleopod movement. Video was recorded for 1 min, 

then a computer-generated random 10 s segment was slowed down and pleopod beats 

were counted and expressed in beats per minute (bpm).  

 

2.2.6 Exposure to the water-soluble fraction of weathered sediment-bound dilbit  

Methods for formulating the water-soluble fraction of WSD using the slow stir 

method were adapted from previous studies and is outlined in Appendix 1 (Singer et al., 
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2000; Philibert et al., 2016) (Fig. A5). In a sealed 2 L Erlenmeyer flask, 270 mL of WSD 

and 1530 mL of SAM-5S freshwater (15% WSD) was mixed at 23.0°C in the dark, 

leaving 20% headspace in the bottle. The contents were mixed for 20 h with a 45 mm stir 

bar spinning at approximately 200 rpm such that no vortex was created. After mixing, the 

contents were allowed to settle for 4 h after which the overlying water was filtered 

through a 0.45 µm filter to ensure that no WSD particles or emulsified oils remained in 

the solution. The 100% WSF was diluted with SAM-5S water such that treatments were 

100%, 50% and 25%.  

Adult amphipods were exposed to the WSF for 96 h, with 10 amphipods in each 

beaker and four replicates per treatment. Beakers were covered but not sealed to facilitate 

gas exchange. Water quality was monitored once daily, and no water changes were 

implemented. At 96 h, respiration, behaviour, AChE activity and oxidative stress were 

assessed.  

 

2.2.7 Behaviour 

Behaviour trials were conducted immediately after the respective exposure period 

following methods outlined by Gauthier et al. (2016). Three amphipods per replicate and 

50 mL of treatment water was transferred to glass petri dishes. The amphipods were 

allowed to acclimate for 1 min and then recorded for 3 min. Activity was measured 

manually and expressed as percent of the time spent swimming.  
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2.2.8 Respiration 

Respiration trials were conducted in glass scintillation vials, measured with a 

Presens Fibox 3 (Regensburg, Germany) fiber optic oxygen transmitter. Vials were fitted 

with rubber stoppers and fiber optic oxygen spot sensors to allow for oxygen 

measurements to be made while the vials were sealed. Vials were filled with 7.55 mL of 

aerated, uncontaminated SAM-5S culture water and seven amphipods per replicate. Vials 

were sealed and the sensor spots were given 5 min to equilibrate. Initial oxygen 

concentrations (mg/L) were recorded immediately and after 1 h. Oxygen consumption 

was normalized to dry weight for direct exposure (2.2.3) and normalized to wet weight 

for exposures to the WSF (2.2.6). Wet weight was used for section 2.2.6 to ensure the 

animals could be used for AChE activity analysis, as drying the organisms would 

denature the enzyme. Oxygen consumption was recorded as mgO2/h/g for both 

experiments. 

 

2.2.9 Acetlycholinesterase activity  

Methods for assessing AChE activity in Hyalella azteca were followed as 

described by Ellman et al. (1961) and Bartlett et al. (2016). Tris buffer (0.05 M) was used 

to mix solutions for the AChE assay. Homogenizing buffer was created by mixing Tris 

buffer at pH 8 with 1% v/v Triton X-100. Ellman’s reagent (5,5’-dithiobis[2-nitrobenzoic 

acid]) (0.25 mM) was mixed with Tris buffer at pH 7.4. Acetylthiocholine iodide 

solutions (0.156 M) were prepared in distilled water. Electric eel cholinesterase (0.2 

units/mL) was prepared in pH 8 homogenizing buffer. Whole amphipods were 

homogenized in 500 µL homogenizing buffer and centrifuged at 10,000 g for 10 min at 
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4ºC. Next, 40 µL of either homogenizing buffer (blank), electric eel cholinesterase 

(enzyme standard) or supernatant from homogenized samples were added to a 96 well 

plate with 250 µL Ellman’s reagent and 10 µL of acetylthiocholine iodide. Absorbance 

was measured at 405 nm in two-minute intervals for 30 min using a spectrophotometer at  

room temperature. AChE activity was calculated using equation 1 (Fairbrother et al., 

1991): 

 

Specific activity = (! ! !"#! ! !""")
(! ! !" ! !"#! ! !")              (1) 

 

where specific activity was in mmol/min/g protein, A was the change in absorbance per 

minute (slope of the linear portion of the curve), VolR was the reaction volume (300 µL), 

1000 was a unit conversion factor (g to mg), E was the extinction coefficient for Ellman’s 

reagent (1.36 104 M-1 cm-1), PL was the pathlength (1 cm), VolH was the homogenate 

volume (500 µL), and PR was the concentration of protein in the homogenate (mg/mL). 

AChE activity was expressed as percent of the control. 

 
 
2.2.10 Oxidative stress 
 

Lipid peroxidation as an indicator of oxidative stress was quantified by measuring 

the concentration of thiobarbituric acid reactive substances (TBARS) in the adult 

amphipods (R&D systems, USA). Briefly, 10 amphipods were homogenized in 500 µL of 

tris buffer (0.05 M, pH 7.4) with 1% Triton X-100 (v/v). The homogenate was 

centrifuged at 10,000 g for 10 min at room temperature and the supernatant was collected. 

The supernatants were acidified with 0.6 N trichloroacetic acid at a 1:1 ratio, incubated at 
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room temperature for 15 min and centrifuged at 12,000 g for 4 min at room temperature 

to remove interfering proteins. A TBARS standard solution was made by combining 100 

µL of 500 µM 1,1,3,3,-tetramethoxypropane with 200 µL of 0.6 N trichloroacetic acid 

and serially diluting to make final TBARS concentrations of 0.26 µM, 0.52 µM, 1.04 µM, 

2.09 µM, 4.18 µM, 8.35 µM and 16.7 µM to be used as a standard curve. Next, 150 µL of 

the acidified samples or TBARS standard was combined with 75 µL of thiobarbituric acid 

in a 96-well plate. An initial spectrophotometer reading was taken at 532 nm, the plates 

were then incubated for 2 h at 50°C and then read again at 532 nm. The difference 

between the first and second reading was calculated and the concentrations of TBARS 

were then interpolated from the standard curve and multiplied by two to account for 

dilution during the acidification step, and normalized to the amount of protein in the 

assay. 

 

2.2.11 Bicinchoninic acid protein assay 

Concentrations of proteins were determined by use of the bicinchoninic acid 

(BCA) assay, with bovine serum albumin as the standard, according to the manufacturer’s 

protocol. To form a BCA working reagent, bicinchoninic acid and 4% w/v copper(II) 

sulfate pentahydrate were mixed at a volume ratio of 50:1 respectively. Protein standards 

of bovine serum albumin were prepared at concentrations of 0 µg/mL, 100 µg/mL, 250 

µg/mL, 500 µg/mL, and 1000 µg/mL in tris buffer. In a 96-well plate, 20 µL of either tris 

buffer, bovine albumin protein standards or homogenate supernatant were added with 200 

µL of the BCA working reagent. The plate was incubated for 30 min at 28°C and read at 
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562 nm with a spectrophotometer. Protein concentrations in each sample were calculated 

by interpolating from the BCA standard curve. 

 

2.2.12 Statistical analysis  

Data were tested for normality using the Shapiro-Wilk test and homogeneity of 

variances among treatments was determined using a Bartlett test. All data met these 

assumptions and therefore parametric tests were used. Two-sample t-test was used for 

experiments with two treatments and one-way ANOVA was used for experiments with >2 

treatments. All statistics were performed using R 3.6.0 (R Core Team, 2019) base 

package. Alpha level of 0.05 was used to determine significance for all tests.  

 

2.3 Results  

2.3.1 Weathered sediment-bound dilbit as a substrate 

In all concentrations of WSD as a substrate, there was 100% mortality after 96 h 

exposure. There was 0% mortality in the kaolin controls. Amphipods exposed to WSD 

were visibly coated in dilbit, particularly on the ventral side (Fig. 2-1).             

                   

Figure 2-1 Amphipods after 96 h exposure to weathered sediment-bound dilbit (WSD) as 
a substrate (left) compared to controls exposed to uncontaminated kaolin (right). 
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2.3.2 Sub-lethal effects of physical interaction with weathered sediment-bound dilbit  

 Compared to controls, amphipods exposed directly to WSD for 10 min had 

significantly lower oxygen consumption, pleopod beating frequency and activity (Fig. 2-

2). Exposed amphipods consumed 47% less oxygen compared to controls (Fig. 2-2a). The 

average pleopod beating frequency was reduced by 78% in exposed amphipods compared 

to controls (Fig. 2-2b). Activity was most severely affected by direct exposure to WSD.  

Direct exposure reduced average time spent swimming from 63% for controls to 0% for 

exposed amphipods (Fig. 2-2c) 

 

2.3.3 Effects of exposure to the water-soluble fraction of weathered sediment-bound 
dilbit  
 
 There was no significant mortality at any concentrations of WSF after 96 h. 

Further, there were no statistically significant changes in any of the sublethal effects 

measured (Fig. 2-3). However, there were trends of increased respiration and increased 

AChE activity with increasing concentration of WSF. Respiration increased by 46% in 

amphipods exposed to WSF100 compared to controls. Amphipods exposed to WSF25, 

WSF50 and WSF100 had AChE activities that increased to 139%, 141%, and 146% of 

the control respectively (Fig. 2-3c). There was no change in the average time spent 

swimming or amount of lipid peroxidation (data not shown) in amphipods exposed to any 

concentration of WSF compared to the control (Fig. 2-3b). 
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Figure 2-2 Oxygen consumption (per g dry weight) (a) pleopod beating frequency (b) 
and behaviour (c) of amphipods following 10 min physical interaction with weathered 
sediment-bound dilbit compared to controls. Replication for pleopod beating frequency 
and oxygen consumption were n=8 and replication for behaviour was n=4. Significant 
differences were determined by two sample t-test and are indicated with an asterisk at 
α=0.05.  
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Figure 2-3 Oxygen consumption (per g wet weight) (a) behaviour (b) and 
acetylcholinesterase (AChE) activity (c) of amphipods following 96 h exposure to the 
water-soluble fraction of weathered sediment-bound dilbit compared to controls. Controls 
were SAM-5S culture water and treatments were dilutions of 100% WSF. Replication for 
all endpoints was n=4. 
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2.4 Discussion 
 
2.4.1 Physical interaction with weathered sediment-bound dilbit  

In the present study, OMAs impacted appendage movement and respiration after 

10 min exposure. Inhibition of appendage movement might have been caused by particles 

making appendages too heavy to move, or causing appendages to stick to the rest of the 

body. Weathering of the dilbit could have exacerbated this, as it made the dilbit more 

adhesive and viscous. Respiration might have been impaired for two reasons; particles 

adhered directly onto the gills blocking gas exchange or because the pleopods were not 

able to move fresh oxygenated water over the gills. The decreased respiration could have 

been overestimated because the amphipods were coated in dilbit, thus overestimating 

their dry weight, but this could not be accounted for because measuring wet weight prior 

to exposure could have caused stress to the amphipods. Taken together, these data suggest 

that acute lethality of amphipods exposed to OMA of weathered dilbit might have been 

due to suffocation.  

Mechanical dispersion into droplets in the absence of sediment could exacerbate 

the toxicity of dilbit to some fish and invertebrates. Dispersed droplets promote 

solubilization of hydrocarbons that replenish lost constituents during exposure, but are not 

known to exacerbate toxic effects as a result of physical contact with aquatic organisms 

(Nordtug et al., 2011; Hansen et al., 2012; Redman et al., 2014). However, in the present 

study, physical impairment was evident when sediment and dilbit were combined with 

mechanical dispersion (mixing). Dilbit can form irregularly shaped aggregates with 

sediments (compared to round droplets without sediment), increasing the surface area and 

possibly promoting more physical interaction with organisms, particularly if the dilbit is 

weathered (Lee et al., 2012; Waterman and Garcia, 2015). Further, OMAs will sink in 



	

	
	

40	

freshwater and therefore have a high potential to interact with benthic and pelagic aquatic 

organisms (Fitzpatrick et al., 2015; Hua et al., 2018). A recent study found that in 

turbulent rivers with high concentrations of suspended fine sediment, 80% of a dilbit spill 

could sink in two hours (Perez et al., 2016). Results of the current study suggest dilbit 

OMAs could cause severe reductions in the benthic invertebrate population.  

 

2.4.2 Exposure to the water-soluble fraction of weathered sediment-bound dilbit  

 Combining weathered dilbit with sediment in freshwater creates a complex mosaic 

of sinks and sources of water-soluble hydrocarbons. Weathering removes BTEX and 

some dicyclic PAHs (which are the most water-soluble), but much of the tricyclic and 

larger PAHs and alkyl-PAHs will remain (Yang et al., 2018). Further, mechanical 

dispersion promotes the formation of smaller dilbit droplets, facilitating release of 

hydrocarbons into the water (Nordtug et al., 2011; Hansen et al., 2012; Redman et al., 

2014). Finally, dilbit binding to sediment will significantly reduce the abundance of 

water-soluble PAHs (Yang et al., 2018), but it is still possible that OMAs might release 

bound PAHs at a later time. In the context of a river, all of these processes occur 

simultaneously, meaning there could be areas that differ in the abundance of water-

soluble hydrocarbons. 

The WSF tested did not cause lethality of adult amphipods during a 96 h 

exposure. In a previous study, cladocerans (Ceriodaphnia dubia) and daphniids (Daphnia 

magna) were exposed to WAFs of CLB dilbit (Robidoux et al., 2018). They found that 

fresh dilbit WAF killed 27% of daphniid neonates after 48 h with a dilbit loading of 32 

g/L (Robidoux et al., 2018). The authors also reported LC50s for cladocerans after 8-day 

exposure of 6.43 g/L for fresh dilbit and >32 g/L for weathered dilbit (Robidoux et al., 
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2018). A similar study using cladocerans reported that exposure to weathered dilbit 

resulted in similar or less mortality than exposure to fresh dilbit (Barron et al., 2018). 

Comparing studies using varying methods of WAF preparation, dilbit loading and 

weathering states is difficult, but given the results of the present study, it appears adult 

Hyalella azteca and Ceriodaphnia dubia neonates could have similar sensitivity to 

weathered dilbit. Oil loadings in this study were greater than in previous studies 

(Robidoux et al., 2018, Barron et al., 2018), but this might not translate to greater 

concentrations of hydrocarbons due to solubility constraints, particularly for weathered 

dilbit, because the lighter constituents that evaporate are generally the most soluble.     

The WSF did not cause AChE inhibition and hyperstimulation of appendages in 

adult amphipods. Previous work has shown these effects at 195 µg/L of phenanthrene 

(Gauthier et al., 2016), whereas the WAF of weathered sediment-bound dilbit in a 

separate study prepared with similar methods as the present study contained <2 µg/L 

phenanthrene (Yang et al., 2018). It is possible that there was simply not a high enough 

concentration of phenanthrene in the WSF to inhibit AChE and the other PAHs present 

may not inhibit AChE. The statistically insignificant increases in respiration and AChE 

activity that were observed in the present study may still affect amphipods and other 

invertebrates over time. Higher metabolic demands could require the affected organism to 

forage more often, reducing the time the organism allocates to other essential tasks such 

as reproduction.  

Increased AChE activity has been reported in Hyalella azteca, Claassenia spp., 

and Procambarus clarkii after exposure to AChE inhibitors such as organophosphate 

pesticides (Repetto et al., 1988; Day and Scott, 1990). In all cases, increased AChE 
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activity was observed at the beginning of the exposure, followed by an eventual decrease 

in activity, or the observed decrease was only at low concentrations of organophosphate. 

Because the present study ended at 96 h, it cannot be determined if chronic exposure 

would eventually result in inhibition of AChE activity following exposure to dilbit. There 

are two plausible explanations for the observed increase in AChE activity following 

exposure to dilbit based on available literature: (1) AChE is upregulated by increased 

concentrations of intracellular cyclic adenosine monophosphate (cAMP) (2) AChE is 

upregulated in cells undergoing apoptosis. Elevated concentrations of cAMP have been 

observed in mussels (Mytilus galloprovincialis) collected near wastewater effluent 

(Dailianis et al., 2003). Increased cAMP can be a general response to multiple 

environmental contaminants and could result from a change in cAMP phosphodiesterase 

or adenylyl cyclase activity (Pareschi et al., 1997). Inducers of cAMP are linked to 

upregulation of AChE in mouse neuroblastoma cells and therefore increased cAMP could 

be an explanation for the increased AChE activity observed in the present study (Curtin et 

al., 2006). Activity of AChE is upregulated in human and mouse cell lines undergoing 

apoptosis, and could be a regulator for apoptosis (Zhang et al., 2002). If exposure to the 

WSF induced apoptosis in certain cell types in amphipods, it could have altered the 

measured whole-body AChE activity. 

In a freshwater environment, the constant release of PAHs from WSD over time 

could affect the health of benthic invertebrates. The Athabasca River contains natural 

bitumen seeps that are a source of PAHs that shape the invertebrate community towards 

species with shorter generation times and lower sensitivities to toxicants (Gerner et al., 

2017). Phenanthrene inhibits the reproduction of Hyalella azteca (Satbhai et al., 2017), 
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and weathered and fresh dilbit both inhibit Ceriodaphnia dubia reproduction (Robidoux 

et al., 2018).  

 

2.5 Conclusion 

 There was a difference between effects of exposure to the WSF and exposure to 

WSD directly as a substrate on Hyalela azteca. WSD bound to the body of amphipods 

immediately after initiation of the exposure, inhibiting movement and respiration, 

resulting in acute lethality. Exposure to the WSF for 96 h did not result in lethality and 

did not significantly change AChE activity, respiration or behaviour. These results 

suggest that physical interaction with WSD likely is the primary threat to benthic 

invertebrates immediately after a spill of dilbit. Over time, the constant release of water-

soluble hydrocarbons, including PAHs, from WSD could affect the health of the benthic 

invertebrate community. Further research on the toxicity of dilbit WSF to amphipods 

should evaluate chronic effects on sublethal endpoints such as reproduction, growth and 

behaviour. Amphipods are a keystone species in freshwater ecosystems near dilbit 

pipelines, therefore understanding their response to dilbit is important for understating the 

ecological costs of spills. It is imperative that future studies of the toxicity of dilbit to 

aquatic organisms incorporate weathering processes into the experimental methods to 

generate a more complete understanding of the effects of dilbit spills in freshwater 

ecosystems.  
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CHAPTER 3: TOXICITY OF WEATHERED SEDIMENT-BOUND DILBIT TO 

THE EARLY-LIFE STAGES ZEBRAFISH (DANIO RERIO) 

 

Abstract  

 

Due to the high viscosity of bitumen extracted from the Alberta oil sands, it must 

be diluted with natural gas condensates to form diluted bitumen (dilbit) to facilitate 

transport through pipelines. Pipelines stemming from the oil sands span thousands of 

freshwater environments and pose a risk to aquatic organisms. If dilbit is spilled into or 

near a waterbody, environmental weathering processes such as evaporation, and 

interaction with sediments can alter the fate of dilbit and its toxicity to aquatic organisms. 

To date, most studies of dilbit have focused on effects of the water-accommodated 

fraction of fresh dilbit to aquatic organisms, primarily fish. Here, we present the first 

study that assesses the toxicity of weathered sediment-bound dilbit (WSD) to a fish 

species. Zebrafish (Danio rerio) embryos were exposed to the water-soluble fraction 

(WSF) or water-accommodated fraction (WAF) of weathered sediment-bound dilbit from 

30 min post-fertilization to five days post-fertilization. Exposed embryos showed 

increases of pericardial edema, yolk sac edema and incidences of uninflated swim 

bladder. The presence of oil-mineral aggregates in the WAF severely increased the 

toxicity of dilbit across all endpoints. There was no change in the abundance of 

transcripts related to the response to oxidative stress (sod, gpx, gst, gclc) or swim bladder 

formation (lef1, axin2, pbx1a, pbx1b), but there was induction of cyp1a, suggesting the 

embryos were exposed to polycyclic aromatic hydrocarbons that may have been 

responsible for the deformities. These results show that despite weathering and 
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combination with sediment, water-soluble compounds remain bioavailable and negatively 

affect the early development of zebrafish.  

 

3.1 Introduction 

The Alberta oil sands are among the largest deposits of oil on earth, containing an 

estimated 165 billion barrels of bitumen: an ‘unconventional’ heavy oil (Lee et al., 2015; 

NASEM, 2015; CAPP, 2018). Bitumen is too viscous to flow through pipelines and must 

be diluted with natural gas condensates to create diluted bitumen or ‘dilbit’ (Crosby et al., 

2013). Despite the projected increase in oil sands development and dilbit production 

(Huot and Grant, 2012; CAPP, 2018), the toxicity of dilbit is largely undocumented 

compared to that of conventional oils. (Dew et al., 2015; Alsaadi et al., 2018a).  

Effects of the water-accommodated fraction (WAF) of dilbit have been explored 

in fish and invertebrates (Madison et al., 2015; Alderman et al., 2017; Madison et al., 

2017; Alderman et al., 2018; Alsaadi et al., 2018; Barron et al., 2018; Robidoux et al., 

2018; McDonnell et al., 2019). The WAF of multiple blends of dilbit is acutely toxic to 

fish and invertebrates (Barron et al., 2018; Robidoux et al., 2018) and can cause a variety 

of cardiotoxic sublethal effects in juvenile and adult fish. When exposed to dilbit, 

embryos of a variety of species of fishes consistently show a high prevalence of blue sac 

disease (BSD) that is coupled with a significant increase in cytochrome P450 1A (cyp1a) 

mRNA abundance and in some studies, an increase in the mRNA abundance for genes 

related to oxidative stress, such as glutathione-S-transferase (gst) (Madison et al., 2015; 

Madison et al., 2017; Alderman et al., 2018; Alsaadi et al., 2018b; McDonnell et al., 

2019). Therefore, adverse effects of exposure to dilbit during development have been 

attributed to polycyclic aromatic hydrocarbons (PAHs) (Madison et al., 2015; Madison et 
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al., 2017; Alderman et al., 2018; Alsaadi et al., 2018b; McDonnell et al., 2019). Because 

dilbit contains a complex mixture of PAHs and alkyl-PAHs, there could also be 

interactions that exacerbate toxicity - such as non-dioxin like PAHs being oxygenated due 

to CYP1A enzyme activity induced by dioxin-like PAHs - but currently this is poorly 

understood (Hodson, 2017).   

Dilbit has the potential to behave differently than conventional oils after a spill 

due to rapid evaporation of the added diluents and subsequent interaction with sediments 

(Environment Canada, 2013a; Lee et al., 2015; NASEM 2015). Evaporation can remove 

some chemicals that are toxic to aquatic organisms and can increase the density of the 

remaining weathered dilbit to the point that it approaches the density of freshwater (SL 

Ross, 2012; King et al., 2014; Hua et al., 2018; Yang et al., 2018). Studies that have 

compared the effects of fresh and weathered dilbit to fathead minnow (Pimephales 

promelas), rainbow trout (Oncorhynchus mykiss), daphniids (Daphnia magna), 

cladocerans (Ceriodaphnia dubia), mysids (Americamysis bahia) and inland silver side 

(Menidia beryllina) found that exposure to fresh dilbit results in greater mortality than 

weathered dilbit, but both weathered and fresh dilbit inhibited reproduction in cladocerans 

and increased immobility in daphniids (Barron et al., 2018; Robidoux et al., 2018). Dilbit 

can combine with fine sediment in the water column, forming oil-mineral aggregates 

(OMAs) that sink in freshwater and saltwater (Lee et al., 2012; Environment Canada, 

2013a; Hua et al., 2018). Aggregation of dilbit with sediment can reduce the 

bioavailability of compounds that could adversely affect the health of aquatic organisms 

(Yang et al., 2018). However, OMAs that are deposited on the benthos could negatively 

affect benthic fish and invertebrates (Environment Canada, 2013a; Dew et al., 2015). 

Samples of contaminated sediment-bound dilbit from the Kalamazoo River dilbit spill 
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that were collected in 2012, two years after the spill, were acutely toxic to freshwater 

amphipods (Hyalella azteca) and freshwater midges (Chironomus dilutus) (GLEC, 2012). 

However, because sediment-bound dilbit has not yet been formulated and used for 

toxicity tests in the laboratory, little is known about effects on aquatic organisms.  

The objective of this study was to characterize the effects of weathered sediment-

bound dilbit (WSD) on the health of zebrafish embryos (Danio rerio). Zebrafish embryos 

were exposed to the water-soluble fraction (WSF) or the water-accommodated fraction 

(WAF) of WSD from within 0.5 hours post-fertilization (hpf) to 120 hpf, and lethality, 

occurrences of malformations, and molecular indicators of toxicity were quantified. This 

was the first study to assess the effects of sediment-bound dilbit to fish, which is 

necessary to understand the totality of the threat that spills of dilbit pose to freshwater 

aquatic organisms and create effective guidelines for cleanup of spills of dilbit.   

 

3.2 Methods  

3.2.1 Preparing water-soluble and water-accommodated fractions of weathered 

sediment-bound dilbit  

Dilbit was weathered according to Fieldhouse et al. (2010) and bound to sediment 

following methods adapted from Environment Canada (2013a) and Waterman and Garcia 

(2015). The preparation of WSD and the various fractions is outlined in a flowchart in 

Appendix 1 (Fig. A5). In short, 200 mL of fresh Cold Lake Blend (CLB) dilbit was 

weathered on a Buchi-121 rotary evaporator at 135 rpm in an 80ºC water bath for 10 

minutes, producing approximately 10% mass loss. At the top of the condenser an 8 mm 

airline was inserted, attached to a 9 mm plastic pipette that extended to the top of the 

evaporation flask. The tubing and pipette were attached to a vacuum pump giving positive 
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airflow at a rate of 13 L/min. Next, 30 mL aliquots of the weathered dilbit were dispensed 

into 1 L glass bottles, containing 600 mL of dechlorinated City of Lethbridge water and 

12 g of kaolin (Sigma, Oakville, ON), and the mixture was allowed to thermally 

equilibrate for 4 h at 26.0°C. Sediment loading was double what has previously been used 

by Environment Canada (2013a) because the objective of this study was to create the 

maximum amount of sediment-bound dilbit per volume of dilbit used. Preliminary tests 

showed that doubling the sediment load did not impair the formation of OMAs (Appendix 

1). Bottles were placed horizontally on a culture table shaker and mixed for 16 h in the 

dark at 160 rpm and 26.0ºC. Next, the entire contents of each bottle were poured into one 

3 L beaker, the beaker was covered with aluminum foil, and the contents were allowed to 

settle for 24 h at 26.0°C in the dark. After the OMAs had settled, the overlaying water 

was siphoned into amber bottles fitted with TeflonTM caps. 

Two water-soluble fractions (WSFs) and two water-accommodated fractions 

(WAFs) were prepared for exposures of zebrafish embryos. The overlaying water in the 3 

L beaker during the settling step comprised the first WAF, which represented a high-

energy mixing environment and had a nominal oil load of 50 mL oil/L. The second WAF 

(sediment-derived WAF – SDWAF) was derived from the collected WSD by 

modification of standard methods for preparation of WAF (Singer et al., 2000; Philibert 

et al., 2016). Briefly, in a 2 L Erlenmeyer flask, 270 mL of WSD and 1530 mL of filtered 

dechlorinated city water was mixed (15% WSD), leaving 20% headspace in the bottle. 

The contents were mixed for 20 h in the dark at 26.0°C with a 45 mm TeflonTM-coated 

stir bar set to approximately 200 rpm such that no vortex was created, and then allowed to 

settle for 4 h. The overlaying water was slowly siphoned and collected. This fraction 
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represented a low-energy mixing environment and had a nominal loading of 36 mL oil/L. 

The WSF and SDWSF were created with identical methods as the WAFs, except they 

were vacuum filtered through a 0.45 µm cellulose filter, thereby excluding the neutrally 

buoyant OMAs in the solution and leaving only water-soluble contaminants. The WSFs 

and WAFs were stored at 4°C in amber bottles fitted with TeflonTM caps with no 

headspace. Serial dilutions of both WSFs and WAFs were prepared with filtered 

dechlorinated city water such that treatments were 100%, 50% and 10% (v/v).  

 

3.2.2 Exposure and embryotoxicity  

Zebrafish (TL strain) were cultured in vertical flow-through racks (Tecniplast, 

Toronto, ON) supplied with dechlorinated city water (average water quality: conductivity 

378 µS/cm, alkalinity 128 mg as CaCO3/L, hardness 165 mg as CaCO3/L, >90% oxygen 

saturation, pH 8.01) at 26°C and kept on a 16:8 light:dark photoperiod. Adults were fed to 

satiety with a 1:1 mixture of Gemma Micro 300 (Skretting, Vancouver, BC) and Ziegler 

(Ziegler, Gardners, PA) 1 mm pellets twice a day.  

The night prior to a breeding event, two adult females and three adult males were 

placed into an aerated sloped breeding tank (Tecniplast) with a false bottom and a divider 

separating females and males. Fish were left in the tank overnight at 26°C. Within 30 

minutes of the light turning on the next morning, the divider was removed and the fish 

were left undisturbed for 30 minutes. Fertilized eggs were collected and placed 

immediately into their respective exposure solutions 

Embryos were exposed from approximately 0.5 hpf to 120 hpf in glass petri dishes 

(50 embryos/dish) containing 40 mL of either dechlorinated city water (control), WSF, 



	

	
	

50	

SDWSF, WAF or SDWAF at concentrations of 10%, 50% and 100% (v/v). At 2 hpf, all 

unfertilized embryos were removed and not counted towards total mortality or hatch 

success. Each day, 50% of the volume of the exposure solution was replaced. Mortality 

and hatch success were recorded immediately after each water renewal. At 48 hpf, the 

heart rate, recorded as number of beats/min, of five embryos per dish were recorded using 

a StrREO Discovery V12 Stereo microscope (Zeiss, North York, ON). At 120 hpf, all 

surviving embryos were assessed for pericardial edema, yolk-sac edema, presence of an 

inflated swim bladder, and spinal curvature, then flash frozen and stored at -80°C until 

required for analysis.  

 

3.2.3 Gene expression using real-time qPCR 

 Semi-quantitative real-time PCR (qPCR) was used to assess mRNA abundances 

of genes involved in swim bladder development, AhR activation, cardiogenesis and the 

response to oxidative stress (Table 3-1). Total RNA was isolated from 10 larvae per 

replicate in treatments with adequate survival, collected at 120 hpf by use of TRIzolTM 

Reagent (Invitrogen, Carlsbad, CA) according to the protocol provided by the 

manufacturer and the concentration of RNA was quantified using a NanoDrop One 

spectrophotometer (ThermoFisher Scientific, Ottawa, ON). Complimentary DNA 

(cDNA) was synthesized from RNA (1500 ng/µL) using Superscript IV VILO Master 

Mix containing ezDNAse (Invitrogen). Real-time qPCR was run at 95°C for 2 min for 

initial denaturation, followed by 40 cycles of denaturation at 95°C for 5 s and annealing 

at 60°C for 10 s. A melt curve was generated to ensure amplification of a single PCR 

product. Efficiencies of primer sets for qPCR were established using serial dilutions of 
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cDNA template (Table 4-1). mRNA abundance of glutathione S-transferase (gst), 

superoxide dismutase (sod), glutamate cysteine ligase catalytic subunit (gclc) and 

glutathione peroxidase (gpx) genes were quantified as they are involved in the oxidative 

stress response (Di Giulio et al., 1989). mRNA abundance of cyp1a gene was quantified 

as an indicator of aryl hydrocarbon receptor (AhR) activation. mRNA abundance of lef1, 

β –catenin, axin2, pbx1b and pbx1b were assessed due to their role in swim bladder 

development. Abundance of mRNA from target genes was then normalized to the 

abundance of β-actin, 18s rRNA and rpl8.  
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Table 3-1 Sequences and efficiencies of primers used for real-time qPCR. 

Target Gene Function Primer Sequence Efficiency 

β-actin Housekeeping F: CGAGCTGTCTTCCCATCCA  
R: TCACCAACGTAGCTGTCTTTCTG 
 

100% 

18s rRNA Housekeeping F: CCACTCCCGAGATCCAACTA  
R: CAAATTACCCATTCCCGACA 
 

105.0% 

rpl8 Housekeeping F: CTCCGTCTTCAAAGCCCATGT 
R: TGTTCCTCGCAGTCTGCCAG 
 

99.0% 

sod Oxidative 
stress response 

 

F: CGTCTATTTCAATCAAGAGGGTG 
R: GATTGCAGCCGTTTGTGTTGTC 
 

107.0% 

gst Oxidative 
stress response 

 

F: TGGTGCTTTGAAGATCATGC 
R: CTGAAACAGCACCAGGTCAC 
 

101.0% 

gpx Oxidative 
stress response 

 

F: GAAATACGTCCGTCCTGGAA  
R: CATAAGGGACACAGGGTCGT 
 

105.5% 

gclc Oxidative 
stress response 

 

F: AACCGACACCCAAAGATTCAGCACT 
R: CCATCATCCTCTGGAAACACCTCC 
 

106.5% 

cyp1a AhR activation 
F: GCATTACGATACGTTCGATAAGGAC  
R: GCTCCGAATAGGTCATTGACGAT 
 

101.9% 

axin2 Wnt signalling 
F: GGACACTTCAAGGAACAACTAC  
R: CCTCATACATTGGCAGAACTG  
 

97.34% 

lef1 Wnt signalling 
F: GAGGGAAAAGATCCAGGAAC  
R: AGGTTGAGAAGTCTAGCAGG 
 

106.4% 

β-catenin Wnt signalling 
F: GACAGGACGACCCAAGCTAC  
R: GCCGTCTACGGGGTAATCAG 
 

92.45% 

pbx1a Surfactant 
production 

 

F: ACGAAAAAGGAGAAACTTCAACAAG 
R: AACCAGTTGGATACCTGTGAG   
 

102.94% 

pbx1b Surfactant 
production 

 

F: GAAAACATGCGCTCAACTGCC  
R: GAGCTCCACGGATACTCAACA 99.1% 
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3.2.4 Oxidative stress 

Lipid peroxidation was quantified as an indicator of oxidative stress by measuring 

the concentration of thiobarbituric acid reactive substances (TBARS) in the surviving 

embryos of the highest concentration of each fraction at 120 hpf (R&D systems, 

Minneapolis, MN). Briefly, 10 embryos per replicate were homogenized in 500 µL of tris 

buffer (0.05 M, pH 7.4) with 1% Triton X-100 (v/v). Homogenate was centrifuged at 

10,000 g for 10 min at 4°C and the supernatant was collected. Supernatants were acidified 

with 0.6 N trichloroacetic acid at a 1:1 ratio, incubated for 15 min and centrifuged at 

12,000 g for 4 min to remove interfering proteins. A standard curve of TBARS solution 

was made by combining 100 µL of 500 µM 1,1,3,3,-tetramethoxypropane with 200 µL of 

0.6 N trichloroacetic acid and diluting this stock to final concentrations of 0.26 µM, 0.52 

µM, 1.04 µM, 2.09 µM, 4.18 µM, 8.35 µM and 16.7 µM to be used as a standard curve. 

Next, 150 µL of the acidified samples or TBARS standards were combined with 75 µL of 

thiobarbituric acid in a 96-well plate. An initial spectrophotometer reading was taken at 

532 nm, then plates were incubated for 2 h at 50°C and then read again at 532 nm. The 

difference between the first and second reading was calculated and concentrations of 

TBARS were interpolated from the standard curve and multiplied by two to account for 

dilution during the acidification step. Concentrations of TBARS were normalized to the 

amount of protein in the supernatant. Concentrations of proteins were determined by use 

of the bicinchoninic acid (BCA) assay (Sigma), with bovine serum albumin (BSA) as a 

standard, according to the protocol provided by the manufacturer. A BCA working 

reagent was made by mixing bicinchoninic acid and 4% w/v copper(II) sulfate 

pentahydrate at a volume ratio of 50:1 respectively. In a 96-well plate, 20 µL of either tris 
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buffer, bovine albumin protein standards or homogenate supernatant were added with 200 

µL of the BCA working reagent. The plate was incubated for 30 min at 28°C and read at 

562 nm with a spectrophotometer. Protein standards of bovine serum albumin were 

prepared at concentrations of 0 µg/mL, 100 µg/mL, 250 µg/mL, 500 µg/mL, and 1000 

µg/mL to form a standard curve. Protein concentrations in each sample were calculated 

by interpolating from the BCA standard curve.  

 

3.2.5 Behaviour  

At 120 hpf three larvae per treatment per replicate were randomly chosen and 

assessed for effects on behaviour following standard methods (Selderslaghs et al., 2010; 

Phillibert et al., 2016). Larvae exposed to the WAF were excluded from behavioural 

analysis due to the dark particles interfering with movement tracking. Severely deformed 

larvae were not used in the assay. One larva was placed into each well of a polystyrene 

24-well plate with 2 mL of their respective exposure solution. Plates were placed in a 

DanioVision observation chamber (Noldus, NL) at 26.0°C and allowed to acclimate in 

the dark for 10 min. Behaviour was tracked for 10 min in the dark, followed by 10 min in 

the light, then this cycle was repeated once. Light intensity was set to 5% (approximately 

500 lux) as this matched the light intensity of the incubator the embryos were raised in. 

Behaviour was tracked using Ethovision XT (Noldus, Ottawa, ON). Thigmotaxis was 

determined by quantifying the amount of time larvae spent in the 3 mm perimeter of the 

well as this is a known anxiety response (Richendrfer et al., 2012; Kalueff, et al., 2013) 

and total distance swam was measured.  
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3.2.6 Statistical analysis  

Data were tested for normality using the Shapiro-wilk test and homogeneity of 

variances between treatments was determined using a Bartlett test. For all data that were 

parametric, one-way analysis of variance (ANOVA) followed by a Dunnett’s test was 

used to determine significant effects of treatments compared to the control. For data that 

were non-parametric, a Kruskall-Wallis test followed by a Dunn test coupled with a 

Bonferroni correction was used to assess effects of treatments. All statistics were 

performed using R 3.6.0 base package (R Core Team, 2019) with the additional 

“dunn.test” (Dinno, 2017) and “multcomp” (Hothorn et al., 2008) packages. Alpha level 

of 0.05 was used to determine significance for all tests.  

 

3.3 Results  

3.3.1 Embryotoxicity   

Fractions of the WSD were acutely toxic to embryos (Table 3-2). Both WAFs 

caused greater five-day mortality than the WSFs. Mortality of embryos exposed to 

WAF50, WAF100 and SDWAF100 treatments was 100% and therefore sublethal effects 

of these concentrations could not be assessed. No significant mortality was observed for 

embryos exposed to either WSF. Across all treatments, the greatest concentration that did 

not cause 100% mortality (WSF100, SDWSF100, WAF10, SDWAF50) caused 

significantly greater incidences of pericardial edema, yolk sac edema and uninflated swim 

bladder compared to controls (Fig. 3-1). Pericardial edema was the most common 

malformation at lower concentrations, with 15% and 23% of embryos exposed to WSF50 

and SDWSF50, respectively, exhibiting this malformation. Neither incidences of spinal 

curvature or changes in heart rate were observed after exposure to either fraction of WSD. 
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Table 3-2 Embryotoxicity after 120 h exposure to water-soluble and water-
accommodated fractions of weathered sediment-bound dilbit showing total mortality, 
presence of malformations at 120 hpf and heart rate at 48 hpf. Values are presented as 
averages ± one SE. PE: pericardial edema, YSE: yolk-sac edema, USB: uninflated swim 
bladder. An asterisk indicates statistical significance compared to control (n=5-6). 

Fraction  Mortality 
(%) 

PE (%) YSE (%) USB (%) Heart rate 
(bpm) 

Control 
WSF10 
WSF50 

WSF100 

13.0 (± 5.3) 
11.0 (± 2.8) 
8.7 (± 3.3) 

21.3 (± 4.9) 

2.1 (± 0.8) 
3.6 (± 1.2) 

15.3 (± 2.8)* 
90.4 (± 2.4)* 

0.4 (± 0.4) 
0.4 (± 0.4) 
1.6 (± 1.2) 

66.3 (± 6.5)* 
 

0.4 (± 0.4) 
1.6 (± 0.8) 
3.9 (± 2.5) 

98.0 (± 4.2)* 

195.6 (± 11.1) 
206.8 (± 9.2) 

212.9 (± 10.4) 
206.8 (± 10.3) 

Control 
SDWSF10 
SDWSF50 

SDWSF100 

13.0 (± 5.3) 
9.7 (± 3.5) 
9.7 (± 4.0) 

15.6 (± 6.3) 

2.1 (± 0.8) 
3.8 (± 1.5) 

22.5 (± 2.6)* 
81.6 (± 4.1)* 

0.4 (± 0.4) 
0.4 (± 0.4) 
2.2 (± 1.4) 

40.2 (± 4.9)* 

0.4 (± 0.4) 
2.6 (± 1.0) 
5.7 (± 2.5) 

86.2 (± 4.6)* 
 

195.6 (± 11.1) 
200.4 (± 8.7) 
219.7 (± 6.2) 

223.0 (± 10.7) 

Control 
WAF10 
WAF50 

WAF100 

13.7 (± 5.8) 
19.9 (± 5.7) 

100* 
100* 

0 
63.0 (± 10.5)* 

NA 
NA 

0 
33.9 (± 13.5)* 

NA 
NA 

 

0.6 (± 0.6) 
75.2 (± 10.8)* 

NA 
NA 

 

186.7 (± 11.6) 
195.8 (± 7.3) 

180.9 (± 11.8) 
175.9 (± 11.6) 

Control 
SDWAF10 
SDWAF50 

SDWAF100 

13.7 (± 5.8) 
34.1 (± 5.7) 
24.1 (± 8.2) 

99.0 (± 1.0)* 

0 
3.5 (± 1.8) 

96.2 (± 1.5)* 
NA 

0 
2.2 (± 1.1) 

86.7 (± 6.4)* 
NA 

0.6 (± 0.6) 
17.0 (± 6.7)* 

100* 
NA 

186.7 (± 11.6) 
201.3 (± 7.0) 
189.1 (± 7.7) 

175.9 (± 15.4) 
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                 USB 
          PE 
 
            PE    YSE 
 
 
    USB 
 
Figure 3-1 Representative control (top), moderately malformed (left) and severely 
malformed (right) zebrafish larvae after 120 h exposure to fractions of weathered 
sediment-bound dilbit. Note PE: pericardial edema, YSE: yolk sac edema, USB: 
uninflated swim bladder.  
 

3.3.2 Gene expression 

The mRNA abundance of cyp1a increased in a concentration-dependent manner in 

embryos exposed to all fractions of the WSD. Abundance was greater by up to 17-fold in 

larvae exposed to the WSF and the SDWSF (Fig. 3-2), whereas abundance was 150-fold 

and 164-fold greater in embryos exposed to the WAF and SDWAF, respectively (Fig. 3-

2). There were no statistically significant changes in mRNA abundances of genes 

important for the response to oxidative stress in embryos exposed to either fraction of the 

WSD (Fig. 3-3). Although not statistically significant, mRNA abundances of sod and gpx 

were up to 2.0-fold lower in larvae exposed to increasing concentrations of WSF and 

SDWSF (Fig. 3-3). Similarly, the mRNA abundance of gst was 2-fold greater in larvae 
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exposed to the WSF and SDWSF and was 3-fold and 4-fold greater in larvae exposed to 

WAF and SDWAF respectively (Fig. 3-3).  

Exposure to fractions of the WSD did not affect mRNA abundances of a subset of 

genes involved in development of the swim bladder. mRNA abundances of axin2, lef1 

and β-catenin were unaffected by exposure to either fraction of the WSD (Fig. 3-4). 

mRNA abundances of pbx1a and pbx1b were not different in larvae exposed to WSD 

(Fig. 3-4).  

 

 

Figure 3-2 Relative cyp1a mRNA abundances in zebrafish larvae following120 h 
exposure to water-soluble (a) and water-accommodated (b) fractions of weathered 
sediment-bound dilbit. Expression was normalized to 18s RNA, β-actin and rpl8. Asterisk 
indicates statistical significance compared to control (n=5-6). Error bars are +/- one SE
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Figure 3-3 Relative mRNA abundances (fold change from control) of genes related to the oxidative stress response in zebrafish larvae 
following 120 h exposure to water-soluble (a-d) and water-accommodated (e-h) fractions of weathered sediment-bound dilbit. (a,e) gpx 
(b,f) gst (c,g) sod (d,h) gclc. Expression was normalized to 18s RNA, β-actin and rpl8. Error bars are +/- one SE (n=5-6). 
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Figure 3-4 Relative mRNA abundances (fold change from control) of genes related to swim bladder formation in zebrafish larvae 
following 120 h exposure to water-soluble (a-e) and water-accommodated (f-j) fractions of weathered sediment-bound dilbit. (a,f) lef1 
(b,g) axin2 (c,h) β-catenin (d,i) pbx1a (e,j) pbx1b. Expression was normalized to 18s RNA, β-actin and rpl8. Error bars are +/- one SE 
(n=5-6)
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3.3.3 Lipid peroxidation  

Embryos exposed to SDWAF50 had 25% greater abundances of peroxidized 

lipids than controls (Fig. 3-5). However, there was no significant change in lipid 

peroxidation in embryos exposed to other fractions (Fig. 3-5).  

 

 

Figure 3-5 Amount of lipid peroxidation in zebrafish larvae after 120 h exposure to 
water-soluble (a) and water-accommodated (b) fractions of weathered sediment-bound 
dilbit. Only the highest concentration with adequate survival was tested for each fraction. 
Lipid peroxidation was quantified as µM TBARS/mg protein and expressed as percent of 
the control. Asterisk indicates statistical significance compared to control. Error bars are 
+/- one SE (n=5-6).  
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3.3.4 Behaviour  

There were distinct differences in total distance travelled but not thigmotaxis 

between the light and dark periods across all treatments. Distance travelled during light 

periods was less than half than that of the dark periods (Fig. 4-6), but thigmotaxis was 

similar between light and dark periods (Fig. 4-7). However, no significant differences in 

total distance travelled between concentrations of either fraction within any light or dark 

period was observed (Fig. 4-6). In the second dark period, larvae exposed to WSF100 

travelled half the distance of controls, but this was not seen in larvae exposed to other 

fractions of WSD and was not statistically significant (Fig. 4-6). Thigmotaxis behaviour 

increased in the larvae exposed to WSF100 compared to controls across all light and dark 

periods, although changes during the light period were not statistically significant (Fig. 4-

7). Control larvae spent 66% and 65% of the time in the border of the well and WSF100 

exposed larvae spent 93% and 91% of the time in the border during the first and second 

dark period respectively (Fig. 4-7). Changes in thigmotaxis were less pronounced in the 

SDWSF exposed larvae. However, in the second dark period, time spent in the border 

increased to 85% for SDWSF100 exposed larvae from 65% for controls (Fig. 4-7).  
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Figure 3-6 Total distances travelled by zebrafish larvae following 120 h exposure to two 
water-soluble fractions of weathered sediment-bound dilbit. Each group of bars represents 
a 10 min period under dark or light conditions. (a) WSF fraction (b) SDWSF fraction. 
Error bars are +/- one SE (n=5). 
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Figure 3-7 Percent of the time spent in the 3 mm border of the well (thigmotaxis) by 
zebrafish larvae after 120 h exposure to two water-soluble fractions of weathered 
sediment-bound dilbit. Each group of bars represents a 10 min period under dark or light 
conditions. (a) WSF fraction (b) SDWSF fraction. Asterisk indicates significant 
difference from control within the respective light/dark period. Error bars are +/- one SE 
(n=5). 
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3.4 Discussion  

3.4.1 Dilbit weathering  

Although this study lacks an unweathered control fraction and therefore it is 

impossible to quantify the degree to which weathering and interaction with sediment 

attenuated the toxicity of dilbit to zebrafish embryos, these processes can reduce the 

bioavailability and presence of PAHs released from dilbit and therefore attenuate toxicity 

to aquatic organisms (Environment Canada, 2013a; Barron et al., 2018; Yang et al., 2018; 

Robidoux et al., 2018). Weathering has been shown to reduce the abundance of low 

molecular weight PAHs such as naphthalenes and biphenyls, and almost completely 

eliminate benzene, toluene, xylene and ethylbenzene (BTEX)  (Barron et al., 2018; Yang 

et al., 2018). Although concentrations of BTEX are lower in dilbit compared to some 

conventional oils (Zhou et al., 2015), a recent study found that compared to PAHs, BTEX 

is a more accurate predictor of effects of dilbit on zebrafish embryos (Philibert et al., 

2016). Despite these losses of chemicals, weathering could increase the potency of dilbit 

as the proportion of alkylated and non-alkylated tricyclic PAHs, which are responsible for 

much of the adverse effects of conventional crude oils–including cardiotoxicity—has 

been shown to increase with weathering (Carls et al., 1999; Jung et al., 2013).  

 

3.4.2 Water-accommodated and water-soluble fractions  

Two different methods were used for preparation of both the WSF (WSF, 

SDWSF) and WAF (WAF, SDWAF) respectively. Across all endpoints, WSF and 

SDWSF were remarkably similar in their effects on development and changes in gene 

expression. While the nominal oil loadings were different between the WSF and SDWSF, 

previous work has shown no difference in total concentrations of PAHs between WAFs 
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prepared with 10 g/L or 32 g/L dilbit (Robidoux et al., 2018). This suggests the WSF and 

SDWSF likely were at or approaching the limit of solubility of PAHs. The WAF and 

SDWAF were more variable in the effects they caused, which could be attributed to the 

variable amount of OMAs between the two fractions, as this was not controlled for.  

The WSF and WAF were assumed to contain the same amount of water-soluble 

dilbit-derived compounds, with the only difference being the presence of neutrally 

buoyant OMAs in the WAF. Exposure to the WAFs caused greater mortality, prevalence 

of malformations and induction of cyp1a than exposure to the WSFs, at their respective 

nominal concentrations (Table 3-1, Fig. 3-2). The presence of OMAs could have 

increased mortality and the prevalence of malformations by interacting directly with the 

chorion, increasing the uptake of PAHs and other dilbit-derived compounds. This 

increase in uptake was supported by the significantly greater cyp1a mRNA abundance in 

embryos exposed to the WAFs. In contrast to findings in the current study, another study 

with zebrafish embryos showed that dissolved hydrocarbons caused ELS toxicity and 

crude oil droplets did not exacerbate toxicity (Carls et al., 2008).  However, some studies 

have found that direct contact of oil droplets with the chorion exacerbated toxicity by 

either creating a greater concentration of dissolved hydrocarbons surrounding the embryo 

or by directly increasing their uptake due to the physical interaction of the oil droplets 

with the chorion (Gonz et al., 2008; Elin et al., 2015). In the current study, it was 

observed that in exposures to either the WAF or SDWAF, a large number of OMAs 

adhered to the chorion, which could be due to the WAFs containing large amounts of 

high-density particles that sank and came into contact with the embryos. Weathering also 

increases the adhesiveness of the dilbit (Environment Canada, 2013a; Zhou et al., 2015), 

which could promote more particle-chorion interactions. Finally, the concentration of oil-
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derived contaminants in WAFs of crude oils is known to decrease over exposure time due 

to volatilization, adhesion to glassware and degradation (Redman and Parkerton, 2015). 

Therefore, compared to the WSF and SDWSF, the OMAs in the WAF and SDWAF 

might have maintained a higher concentration of PAHs by releasing them over time.  

 

3.4.3 Oxidative stress as a mechanism of toxicity  

Results of the current study suggest that the main mechanism of toxicity in 

zebrafish embryos exposed to fractions of WSD was not oxidative stress. There was a 

25% increase lipid peroxidation in SDWAF50 exposed embryos, but this would have 

been observed in other fractions if it were the main mechanism of toxicity (Fig. 3-5). It is 

possible, however, that at high concentrations of WAF, oxidative stress could have 

contributed to the adverse effects caused by exposure to dilbit. The presence of OMAs 

could expose zebrafish embryos to less soluble PAHs that were not present in the WSF 

and SDWSF, and possibly PAHs that induce oxidative stress. Expression of SOD, GPX or 

GCLC was not significantly increased in embryos exposed to either fraction of WSD (Fig. 

3-3). Although not statistically significant, expression of GST was greater in embryos 

exposed to higher concentrations of WAF and WSF (Fig. 3-3). Expression of GST has 

been used as a biomarker for the cellular oxidative stress response because it catalyzes the 

conjugation of electrophilic reactive metabolic intermediates with glutathione, allowing 

them to be excreted from the cell (Hayes and Pulford, 1995; Lu et al., 2009). However, 

expression of GST is known to be regulated by activation of the AhR (Nebert et al., 2000; 

Laborde, 2010; Brown et al., 2016). Previous studies have proposed oxidative stress as a 

mechanism of toxicity in ELS of fishes exposed to dilbit (Madison et al., 2015), but the 

findings of the current study agree with other studies of dilbit that found little evidence of 
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oxidative stress in ELS of fishes following exposure to dilbit (Madison et al., 2017; 

Alsaadi et al., 2018; McDonnell et al., 2019). Additionally, rainbow trout and Japanese 

medaka exposed to the tricyclic PAH retene displayed BSD, but no indications of 

oxidative stress (Bauder et al., 2005; Alharbi et al., 2016). 

 

3.4.4 Cardiac impairment as a mechanism of toxicity   

 Effects of fractions of WSD on zebrafish embryos are consistent with 

cardiotoxicity as a mechanism of toxicity. Polycyclic aromatic hydrocarbons were most 

likely responsible for the observed effects as they are significantly more genotoxic, 

carcinogenic and teratogenic than other water-soluble oil-derived constituents (Nam et al, 

2008, Hodson, 2017; Yang et al., 2018). Further, three to four-ringed alkyl-PAHs have 

been shown to be embryotoxic to rainbow trout whereas other constituents in heavy oils, 

such as naphthalenes, alkanes, resins and asphaltenes have been shown to be relatively 

benign (Adams et al., 2014). Both water-soluble and water-accommodated fractions of 

WSD showed effects indicative of ELS exposure to PAHs, comparable to those seen in 

other studies that exposed ELS of fish to dilbit (Phillibert et al., 2016; Madison et al., 

2017; McDonnell et al., 2019). Cardiotoxicity is a pronounced effect in ELS of fish 

exposed to crude oils. Although reductions in heart rate, which is a well described effect 

of crude oil on fish embryos (Incardona et al., 2009; Philibert et al., 2016), was not 

evident in embryos exposed to the fractions of WSD (Table 1), incidences of pericardial 

edema were increased. Previous studies suggest that the developing fish heart is the organ 

most severely affected by exposure to crude oils, and that other effects commonly 

associated with exposure to crude oil, including edemas, craniofacial malformations, and 
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failure of the swim bladder to inflate, are due to poor circulation as a result of 

cardiotoxicity (Incardona et al., 2014).   

Polycyclic aromatic hydrocarbons are known to cause cardiotoxicity by AhR-

dependent and AhR-independent mechanisms. Activation of the AhR by planar PAHs 

causes dysregulation of expression of genes that regulate cell proliferation in 

cardiomyocytes (Incardona, 2017). Tricyclic PAHs can cause cardiotoxicity independent 

of AhR by interfering with the balance of K+ and Ca2+ ions in the cell (Brette et al., 2014; 

Brette et al., 2017). The efflux of K+ ions from the cell is blocked directly by tricyclic 

PAHs, resulting in the inability of the cell to re-polarize properly. The Ca2+ in the 

sarcoplasmic reticulum is also depleted and the influx of new Ca2+ through L-type 

calcium channels is blocked, impairing the contraction of calcium-dependent 

myofilaments. Both AhR-dependent and AhR-independent mechanisms of cardiotoxicity 

affect development of the heart in fish embryos, resulting in BSD (Incardona et al., 2004; 

Incardona et al., 2009; Zhang et al., 2013; Edmunds et al., 2015; Incardona, 2017). The 

concentration-dependent increase in cyp1a mRNA abundance suggests there could be 

AhR-dependent cardiotoxicity following exposure to dilbit fractions. Further, there could 

also be AhR-independent cardiotoxicity due to the high abundance tricyclic PAHs present 

in dilbit. Results of the current study are consistent with previous studies of conventional 

crude oils and therefore fish ELS toxicity following exposure to dilbit could be resulting 

from cardiotoxicity as well. 

 

3.4.5 Swim bladder formation  

In the present study, incidences of uninflated swim bladders were common 

malformations in zebrafish embryos exposed to WSD. Early development of the swim 
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bladder occurs from 36 hpf –120 hpf in three stages: epithelial budding, followed by the 

formation of the mesenchymal and outer mesothelial tissue layers, inflation of the swim 

bladder (Winata et al., 2009). During these stages, expression of various genes including 

those involved in Wnt signalling are required for proper development of the swim bladder 

development (Yin et al., 2011). Early in development, Wnt signaling is vital for formation 

of the epithelial bud, whose correct organization is necessary for proper formation of 

mesenchyme and mesothelium (Yin et al, 2011). The classical Wnt signalling pathway 

involves many genes including β-CATENIN, LEF1 and AXIN2 (MacDonald et al., 2009). 

Expression of AXIN2 and LEF1 occurs at 36 hpf – 72 hpf (Yin et al., 2011). In addition to 

genes in the Wnt signaling pathway, PBX1A and PBX1B are expressed in the swim 

bladder from 28 hpf – 6 dpf, and play an important role in surfactant production that is 

vital to inflation of the swim bladder (Teoh et al., 2010). 

The absence of any effects of fractions of the WSD on expression of β-catenin, 

LEF1, AXIN2, PBX1A and PBX1B suggests that dysregulation of expression of these 

genes might not be the mechanism of impaired development of the swim bladder. This 

indicates that a change in gene expression was at an earlier time during development or 

that the mechanism of improper development of the swim bladder was via another 

mechanism such as cardiotoxicity, behavioural alteration or thyroid disruption. 

 

3.4.6 Behaviour  

Larvae exposed to WSF and SDWSF exhibited greater thigmotaxis behaviour than 

controls (Fig. 4-7). Thigmotaxis is an anxiety response and is also seen in zebrafish larvae 

exposed to caffeine (Richendrfer et al., 2012). Although the mechanism of the altered 

behaviour is unclear, it could reduce the amount of time larvae spend foraging or 
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performing swim-up behaviour, as they will not leave shelter. The sole other study that 

analyzed zebrafish behaviour after exposure to dilbit found that it did not impact total 

distance travelled, but did reduce thigmotaxis (Philibert et al., 2016). The discrepancy in 

the total distance travelled could be due to the presence of malformations that inhibit 

proper movement in the larvae selected for behavioural testing. Severely malformed fish 

were excluded, but it is possible that WSF100 exposed larvae chosen were inhibited from 

moving due to edemas or the absence of a swim bladder. Reduced swimming could also 

have been due to cardiotoxicity, as juvenile fish can have reduced swimming performance 

following exposure to crude oil (Carls et al., 1999). However, if this were the case, we 

would expect to see similar behavioural changes in the SDWSF treatment, because for all 

other endpoints in the present study the effects of exposure to fractions of WSD were 

remarkably similar. The opposite response in the thigmotaxis behaviour compared to 

Philibert et al. (2016) could be because WAFs used in that study were unweathered and 

contained BTEX, possibly producing a different behavioural response. Behavioural 

differences can also be explained because their test was performed with embryos at 7 dpf, 

not 5 dpf, and different stages of development can result in pronounced differences in 

behaviour (Kalueff, et al., 2013).  

There was no inflation of the swim bladder in many larvae, but it remains a 

possibility that the tissues and structure of the swim bladder were properly developed but 

the subsequent inflation never occurred. Inflation of the swim bladder occurs when 

zebrafish perform a swim-up behavior, swallowing air which is moved into the swim 

bladder, thereby inflating it (Goolish & Okutake, 1999; Lindsey et al, 2010; Woolley and 

Qin, 2010). Although this behavior was not assessed, it is hypothesized that larvae may 

not have performed the swim up behaviour due to malformations or the swim-up 
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behaviour could have been inhibited due to hydrocarbons in the WSD fractions forming a 

film on the surface of the water (Marty et al., 1995; Madison et al., 2017). To further 

investigate the mechanism of improper swim bladder development, behavioural analysis 

could be performed during the inflation stage to assess if the larvae are performing the 

swim-up behavior to inflate the swim bladder. 

 

3.5 Conclusion 

The fate and behaviour of dilbit after a spill is important to consider when 

developing post-spill cleanup practices. Similar to mechanical dispersion, combining with 

sediment (particularly fine-grained) is effective at dispersing dilbit, which can increase 

the release of dilbit-derived contaminants, especially when there are no solubility 

constraints (large water-bodies) as is seen with chemically dispersed crude oils. Oil-

mineral aggregates will also facilitate transport of dilbit to the pelagic and benthic zones 

of aquatic ecosystems, increasing the potential for a spill to affect a broader range of 

organisms. This study used novel methods to expose early-life stages of fish to dilbit 

while incorporating ecologically relevant environmental factors that can influence the 

toxicity of dilbit. Given the results of this study, weathering and combination with 

sediment does not attenuate the toxicity dilbit and still affects the health of developing 

fish embryos. Similar to conventional crude oil, cardiotoxicity rather than oxidative stress 

appears to be the critical mechanism of toxicity of WSD to ELS of fishes. The presence 

of OMAs appears to significantly exacerbate toxicity, perhaps by facilitating increased 

uptake of PAHs by the embryos. Ecologically, this is important because OMAs can affect 

benthic and pelagic organisms for long periods of time. Future studies should consider 

how weathering and interactions with sediments influences the effects of dilbit on aquatic 
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organisms in order to generate a more comprehensive understanding of potential effects 

that any spills of dilbit might have on aquatic systems. 
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CHAPTER 4: GENERAL DISCUSSION AND CONCLUSIONS 

 

In the present study, exposure to WSD affected the health of adult amphipods and 

ELS of zebrafish. Weathering and interaction with sediment is not adequate to completely 

attenuate toxicity of dilbit to either species. In fact, the presence of OMAs significantly 

exacerbated toxicity of WSD to both species. Oil-mineral aggregates adhered to 

freshwater amphipods, inhibiting respiration and proper appendage movement, resulting 

in acute lethality. Zebrafish embryos exposed directly to OMAs were subject to greater 

concentrations of PAHs, had greater mortality and greater rates of malformations than if 

OMAs were removed. Effects of WSD on ELS of zebrafish were comparable to other 

studies of dilbit and conventional oils in multiple fish species and are likely the result of 

cardiotoxicity.  

The findings in this thesis are relevant to spills of dilbit into freshwater 

environments because weathering and sediment interaction are inevitable environmental 

processes that evidently influence the fate and toxicity of spilled dilbit. Dilbit spills could 

be a greater threat to aquatic organisms in freshwater bodies that have high sediment 

loads and turbulence compared to slow-flowing freshwater bodies with low sediment 

loads. Aquatic organisms such as fish embryos and benthic invertebrates are particularly 

vulnerable to WSD because of their potential to interact with contaminated sediments. 

Weathered sediment-bound dilbit can affect the health of aquatic organisms by physically 

impairing gas exchange structures and appendage movements or serve as a constant 

source of water-soluble PAHs. Although PAHs bind to sediment and interaction with 

sediment disperses dilbit, it is evident that sediment interaction is not an exclusively 

beneficial process following a spill of dilbit.  
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Future research on the effects of dilbit to aquatic organisms should also 

incorporate environmental weathering processes to provide a more complete assessment 

of the risk dilbit spills pose to aquatic organisms. Studies investigating the long-term 

effects of dilbit spills on aquatic organisms are required, because a large proportion of 

dilbit is non-biodegradable and could persist for long periods of time following a spill. 

Finally, underlying mechanisms of toxicity—such as cardiotoxicity—in aquatic 

organisms exposed to dilbit should be further investigated and compared to conventional 

oils.  

 There were shortcomings in the present study. First, there was no quantitative 

assessment of how weathering and sediment interaction affected the concentration of 

water-soluble PAHs in the WSFs used for exposures of zebrafish embryos. Without pre 

and post weathering PAH measurements, the only conclusion that can be made is that 

weathering and sediment interaction does not completely attenuate toxicity of dilbit WSF 

to ELS of zebrafish. If pre and post weathering and sediment interaction PAH 

measurements were made, it would be possible to determine to what degree weathering 

processes attenuate toxicity – if at all. Further, it would be useful to determine the 

concentration of OMAs in the WAFs used for exposure of zebrafish embryos. Because 

OMA quantification was not performed, it is difficult to determine to what degree OMAs 

exacerbate toxicity compared to the filtered WSFs. It is also possible that the filtration 

process removed some soluble PAHs, thus underestimating toxicity of the WSFs. Finally, 

effects of dilbit WSF to amphipods could have been assessed at an earlier life stage, or for 

a longer period of time. Amphipod neonates are generally more sensitive to aquatic 

contaminants and therefore could have a different response to dilbit WSF than adults. A 
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chronic study of the effects of dilbit WSF on amphipods would have allowed for 

assessments of growth and reproduction to be made.  

Due to the rapid expansion of the oil sands, it is important that the effects of dilbit 

on aquatic organisms receive further attention in a broad range of species and exposure 

conditions to adequately understand the ecological and economic costs associated with 

dilbit spills. Toxicity of dilbit will not only be impacted by sediment interaction, but also 

by dissolved organic carbon, which would ultimately be dependent on pH, alkalinity and 

conductivity. Studies that incorporate pH, alkalinity and conductivity changes allow for 

the application of the findings to a variety of freshwater systems. Further, it is necessary 

for future experiments to include additional weathering processes such photomodification 

and biodegradation. Our novel research is an essential step to fully understanding 

immensely complex dilbit spills in freshwater environments.  
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APENDIX 1: PRELIMINARY CHARACTERIZATION OF COLD LAKE BLEND 
DILBIT  

 
 

The composition of dilbits can vary greatly between different blends and the time 
of year it was formulated. Therefore, prior to performing toxicity tests that incorporated 
weathering and combination with sediments, it was important to characterize the Cold 
Lake Blend (CLB) dilbit that was acquired for this project. Dilbit was weathered 
according to Fieldhouse et al. (2010) and bound to sediment following methods adapted 
from Environment Canada (2013a) and Waterman and Garcia (2015). In short, 100 mL of 
fresh dilbit was weathered in 500 mL pear-shaped evaporation flask attached to a Buchi-
121 rotary evaporator at 135 rpm in an 80ºC water bath for 48 h (Fig. A1a). Between 
weathering events, the evaporation flask was sealed and stored in the fridge. A Lauda WK 
300 circulation chiller set to 4°C was attached to the condenser (Fig. A1b). The top of the 
condenser was open to the atmosphere, where an 8 mm airline was inserted, attached to a 
9 mm plastic pipet that extended to the top of the evaporation flask (Fig. A1a). The tubing 
and pipet were attached to a vacuum pump giving positive airflow at a rate of 13 L/min 
(Fig. A1b).  

Three weathering states were then chosen to assess for sediment combination 
based on mass loss over 48 h: W1 (9.7%), W2 (19.3%), and W3 (29.0%). 30 mL portions 
of the weathered dilbits were dispensed into 1 L glass bottles with 600 mL of freshwater 
and 12 g of kaolin and allowed to thermally equilibrate for 4 h (Fig. A2a). Bottles were 
placed horizontally in a culture table shaker and mixed for 16 h in the dark at 160 rpm 
and 21.0ºC. Immediately after mixing (Fig. A2b), bottles were poured into 1 L graduated 
cylinders to observe the settling process over 24 h (Fig. A3a, Fig. A3b).   
 
 

 

  
Figure A1 Lauda WK 300 circulation chiller and vacuum pump. Chiller set at 4°C and 
vacuum pump set to 13 L/min (left). Buchi-121 Rotary evaporator. Entering at the top of 
the condenser is an 8mm airline tube connected to a 9mm plastic pipet tube that extends 
to the beginning of the evaporation flask (right).  
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Figure A2 One-liter glass bottles filled with 30 mL weathered dilbit, 12 g kaolin and 600 
mL freshwater. Prior to mixing (left) and after 16 h mixing on table shaker (right). For 
both pictures the left bottle is W1 (9.7% mass loss), the middle bottle is W2 (19.3% mass 
loss), and the right bottle is W3 (29.0% mass loss).  
 

  
Figure A3 One-liter graduated cylinders filled with a mixture of 30 mL of dilbit 
weathered to varying degrees, 12 g kaolin and 600 mL freshwater that were mixed on a 
table shaker for 16 h. Immediately after addition to the cylinder (a) after 24 h settling (b). 
For both pictures, the left cylinder is W1 (9.7% mass loss), the middle cylinder is W2 
(19.3% mass loss), and the right cylinder is W3 (29.0% mass loss).  
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Figure A4 Evaporation of Cold Lake Blend dilbit over 48 h. Weathering was done on a 
rotary evaporator at 80°C with a positive airflow of 13 L/min.  
 
 
 
 

 
Figure A5 Flow chart depicting the preparation of weathered sediment-bound dilbit, 
water-accommodated fractions and water-soluble fractions.  
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In each 1 L glass bottle: 
•  600 mL freshwater  
•  30 mL weathered dilbit (10% mass loss)  
•  12 g kaolin  

Bottles are mixed for 16 h at 160 rpm  Contents of the four bottles are 
emptied into one 3 L beaker  

Mixture is allowed to 
settle for 24 h  

Overlaying water is siphoned and used 
for exposures unfiltered (WAF) or 
filtered (WSF) with an oil loading of  
50 mL/L 

Sunken weathered sediment-bound 
dilbit (WSD) is collected   

270 mL of WSD is mixed with 1530 
mL of freshwater with a stir bar for 
20 h and allowed to settle for 4 h  

Overlaying water is siphoned and 
used for exposures unfiltered 
(SDWAF) or filtered (SDWSF) with 
an oil loading of 36 mL/L 
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The primary purpose of this preliminary experiment was to characterize the 
weathering and sediment interaction characteristics of the acquired dilbit. The maximum 
amount of weathering achievable was found to be 29.0%, comparable to previous 
findings with CLB dilbit (Environment Canada, 2013a). Weathering states of 9.7% (W1), 
19.3% (W2) and 29.0% (W3) mass loss were chosen to combine with sediment. There 
was a negative relationship with the degree of weathering and efficiency of OMA 
formation. W1 dilbit combined well with kaolin, as there were no kaolin particles that 
were un-bound to dilbit (Fig. A3b). The dilbit in W2 formed a viscous matte on the 
surface of the water and there were few kaolin particles bound to dilbit (Fig. A3b). 
Tarballs in W3 were prevalent and there was no visible combination with sediment (Fig. 
A3b). These results were comparable to previous studies that explored dilbit weathering 
and sediment interaction (a, 2013; Hua et al., 2018). As dilbit weathers and loses low-
molecular weight components, it becomes more viscous and dense. Although the 
increased density should facilitate sinking of dilbit, the increased viscosity prevents 
emulsification into small droplets, which is required for the formation of OMA 
(Environment Canada, 2013a; Zhou et al., 2015; Hua et al., 2018). Without the formation 
of OMAs, spilled dilbit will remain floating or become neutrally buoyant (SL Ross, 2012; 
Zhou et al., 2015).  

Based on these preliminary results, a weathering state of 10% mass loss was 
chosen for all subsequent toxicity tests. This degree of weathering represents 
approximately 1.5 h open-pan evaporation at 15°C with no agitation and is a realistic 
degree of weathering that would occur during a spill before the dilbit interacted with 
sediment (Environment Canada, 2013a).  
 


