15 research outputs found

    Risk of Peritoneal Carcinomatosis After Risk-Reducing Salpingo-Oophorectomy:A Systematic Review and Individual Patient Data Meta-Analysis

    Get PDF
    PURPOSEAfter risk-reducing salpingo-oophorectomy (RRSO), BRCA1/2 pathogenic variant (PV) carriers have a residual risk to develop peritoneal carcinomatosis (PC). The etiology of PC is not yet clarified, but may be related to serous tubal intraepithelial carcinoma (STIC), the postulated origin for high-grade serous cancer. In this systematic review and individual patient data meta-analysis, we investigate the risk of PC in women with and without STIC at RRSO.METHODSUnpublished data from three centers were supplemented by studies identified in a systematic review of EMBASE, MEDLINE, and the Cochrane library describing women with a BRCA-PV with and without STIC at RRSO until September 2020. Primary outcome was the hazard ratio for the risk of PC between BRCA-PV carriers with and without STIC at RRSO, and the corresponding 5- and 10-year risks. Primary analysis was based on a one-stage Cox proportional-hazards regression with a frailty term for study.RESULTSFrom 17 studies, individual patient data were available for 3,121 women, of whom 115 had a STIC at RRSO. The estimated hazard ratio to develop PC during follow-up in women with STIC was 33.9 (95% CI, 15.6 to 73.9), P <.001) compared with women without STIC. For women with STIC, the five- and ten-year risks to develop PC were 10.5% (95% CI, 6.2 to 17.2) and 27.5% (95% CI, 15.6 to 43.9), respectively, whereas the corresponding risks were 0.3% (95% CI, 0.2 to 0.6) and 0.9% (95% CI, 0.6 to 1.4) for women without STIC at RRSO.CONCLUSIONBRCA-PV carriers with STIC at RRSO have a strongly increased risk to develop PC which increases over time, although current data are limited by small numbers of events

    Kinetic and perfusion modeling of hyperpolarized (13)C pyruvate and urea in cancer with arbitrary RF flip angles.

    No full text
    The accurate detection and characterization of cancerous tissue is still a major problem for the clinical management of individual cancer patients and for monitoring their response to therapy. MRI with hyperpolarized agents is a promising technique for cancer characterization because it can non-invasively provide a local assessment of the tissue metabolic profile. In this work, we measured the kinetics of hyperpolarized [1-(13)C] pyruvate and (13)C-urea in prostate and liver tumor models using a compressed sensing dynamic MRSI method. A kinetic model fitting method was developed that incorporated arbitrary RF flip angle excitation and measured a pyruvate to lactate conversion rate, Kpl, of 0.050 and 0.052 (1/s) in prostate and liver tumors, respectively, which was significantly higher than Kpl in healthy tissues [Kpl =0.028 (1/s), P&lt;0.001]. Kpl was highly correlated to the total lactate to total pyruvate signal ratio (correlation coefficient =0.95). We additionally characterized the total pyruvate and urea perfusion, as in cancerous tissue there is both existing vasculature and neovascularization as different kinds of lesions surpass the normal blood supply, including small circulation disturbance in some of the abnormal vessels. A significantly higher perfusion of pyruvate (accounting for conversion to lactate and alanine) relative to urea perfusion was seen in cancerous tissues (liver cancer and prostate cancer) compared to healthy tissues (P&lt;0.001), presumably due to high pyruvate uptake in tumors

    Directly detected (55)Mn MRI: application to phantoms for human hyperpolarized (13)C MRI development.

    No full text
    In this work we demonstrate for the first time directly detected manganese-55 ((55)Mn) magnetic resonance imaging (MRI) using a clinical 3T MRI scanner designed for human hyperpolarized (13)C clinical studies with no additional hardware modifications. Due to the similar frequency of the (55)Mn and (13)C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective "(13)C" MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, (55)Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical (13)C phantom MRI, at greatly reduced cost as compared with large (13)C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d=8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by (55)Mn MRI in a human head coil tuned for (13)C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for (55)Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~60 at 0.5 cm(3) spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP (13)C coils and methods designed for human studies
    corecore