4 research outputs found
Adipose-derived cardiomyogenic cells: in vitro expansion and functional improvement in a mouse model of myocardial infarction
Aims Cells derived from the stroma vascular fraction (SVF) of mouse adipose tissue can spontaneously give rise to rare, functional, cardiac-like cells in vitro. This study aimed to improve the production of adipose-derived cardiomyogenic cells (AD-CMG), to characterize them and to assess their cardiac fate and functional outcomes after their administration in a mouse model of acute myocardial infarction.
Methods and results The culture process optimized to improve in vitro cardiac specification consisted of a primary culture of murine SVF cells in semi-solid methylcellulose medium, a selection of AD-CMG cell clusters, and a secondary culture and expansion in BHK21 medium. AD-CMG cells were CD29+, CD31−, CD34−, CD44+, CD45−, CD81+, CD90−, CD117−, and Flk-1− and expressed several cardiac contractile proteins. After 1, 2, and 4 weeks of their injection in mice having acute myocardial infarction, a strong presence of green fluorescent protein-positive cells was identified by immunohistochemistry as well as quantitative polymerase chain reaction. Echocardiography showed a significant reduction of remodelling and stability of left ventricle ejection fraction in the AD-CMG cell-treated group vs. controls. Vascular density analysis revealed that AD-CMG administration was also associated with stimulation of angiogenesis in peri-infarct areas.
Conclusion Cardiomyogenic cells can be selected and expanded in large amounts from mouse adipose tissue. They can survive and differentiate in an acute myocardial infarction model, avoiding remodelling and impairment of cardiac function, and can promote neo-vascularization in the ischaemic heart
Adipose-derived cardiomyogenic cells: in vitro expansion and functional improvement in a mouse model of myocardial infarction
Aims Cells derived from the stroma vascular fraction (SVF) of mouse adipose tissue can spontaneously give rise to rare, functional, cardiac-like cells in vitro. This study aimed to improve the production of adipose-derived cardiomyogenic cells (AD-CMG), to characterize them and to assess their cardiac fate and functional outcomes after their administration in a mouse model of acute myocardial infarction.
Methods and results The culture process optimized to improve in vitro cardiac specification consisted of a primary culture of murine SVF cells in semi-solid methylcellulose medium, a selection of AD-CMG cell clusters, and a secondary culture and expansion in BHK21 medium. AD-CMG cells were CD29+, CD31−, CD34−, CD44+, CD45−, CD81+, CD90−, CD117−, and Flk-1− and expressed several cardiac contractile proteins. After 1, 2, and 4 weeks of their injection in mice having acute myocardial infarction, a strong presence of green fluorescent protein-positive cells was identified by immunohistochemistry as well as quantitative polymerase chain reaction. Echocardiography showed a significant reduction of remodelling and stability of left ventricle ejection fraction in the AD-CMG cell-treated group vs. controls. Vascular density analysis revealed that AD-CMG administration was also associated with stimulation of angiogenesis in peri-infarct areas.
Conclusion Cardiomyogenic cells can be selected and expanded in large amounts from mouse adipose tissue. They can survive and differentiate in an acute myocardial infarction model, avoiding remodelling and impairment of cardiac function, and can promote neo-vascularization in the ischaemic heart
Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction
Aims: To determine the effect of transplantation of undifferentiated and cardiac pre-differentiated adipose stem cells compared with bone marrow mononuclear cells (BM-MNC) in a chronic model of myocardial infarction.
Methods: Ninety-five Sprague–Dawley rats underwent left coronary artery ligation and after 1month received by direct intramyocardial injection either adipose derived stem cells (ADSC), cardiomyogenic cells (AD-CMG) or BM-MNC from enhanced-Green Fluorescent Protein (eGFP) mice. The control group was treated with culture medium. Heart function was assessed by echocardiography and 18F-FDG microPET. Cell engraftment, differentiation, angiogenesis and fibrosis in the scar tissue were also evaluated by (immuno)histochemistry and immunofluorescence.
Results: One month after cell transplantation, ADSC induced a significant improvement in heart function (LVEF 46.3±9.6% versus 27.7±8% pre-transplant) and tissue viability (64.78±7.2% versus 55.89±6.3% pre-transplant). An increase in the degree of angiogenesis and a decrease in fibrosis were also detected. Although transplantation of AD-CMG or BM-MNC also had a positive, albeit smaller, effect on angiogenesis and fibrosis in the infarcted hearts, this benefit did not translate into a significant improvement in heart function or tissue viability.
Conclusion: These results indicate that transplantation of adipose derived cells in chronic infarct provides a superior benefit to cardiac pre-differentiated ADSC and BM-MNC
Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction
Aims: To determine the effect of transplantation of undifferentiated and cardiac pre-differentiated adipose stem cells compared with bone marrow mononuclear cells (BM-MNC) in a chronic model of myocardial infarction.
Methods: Ninety-five Sprague–Dawley rats underwent left coronary artery ligation and after 1month received by direct intramyocardial injection either adipose derived stem cells (ADSC), cardiomyogenic cells (AD-CMG) or BM-MNC from enhanced-Green Fluorescent Protein (eGFP) mice. The control group was treated with culture medium. Heart function was assessed by echocardiography and 18F-FDG microPET. Cell engraftment, differentiation, angiogenesis and fibrosis in the scar tissue were also evaluated by (immuno)histochemistry and immunofluorescence.
Results: One month after cell transplantation, ADSC induced a significant improvement in heart function (LVEF 46.3±9.6% versus 27.7±8% pre-transplant) and tissue viability (64.78±7.2% versus 55.89±6.3% pre-transplant). An increase in the degree of angiogenesis and a decrease in fibrosis were also detected. Although transplantation of AD-CMG or BM-MNC also had a positive, albeit smaller, effect on angiogenesis and fibrosis in the infarcted hearts, this benefit did not translate into a significant improvement in heart function or tissue viability.
Conclusion: These results indicate that transplantation of adipose derived cells in chronic infarct provides a superior benefit to cardiac pre-differentiated ADSC and BM-MNC