38 research outputs found
Formation of Large-Scale Semi-Organized Structures in Turbulent Convection
A new mean-field theory of turbulent convection is developed. This theory
predicts the convective wind instability in a shear-free turbulent convection
which causes formation of large-scale semi-organized fluid motions in the form
of cells or rolls. Spatial characteristics of these motions, such as the
minimum size of the growing perturbations and the size of perturbations with
the maximum growth rate, are determined. This study predicts also the existence
of the convective shear instability in a sheared turbulent convection which
results in generation of convective shear waves with a nonzero hydrodynamic
helicity. Increase of shear promotes excitation of the convective shear
instability. Applications of the obtained results to the atmospheric turbulent
convection and the laboratory experiments on turbulent convection are
discussed. This theory can be applied also for the describing a mesogranular
turbulent convection in astrophysics.Comment: 16 pages, 10 figures, REVTEX4, PHYSICAL REVIEW E, v. 67, in press
(2003
The BLLAST field experiment: Boundary-Layer late afternoon and sunset turbulence
Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso-or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations
An Airborne Laser Air Motion Sensing System. Part II: Design Criteria and Measurement Possibilities
A re-evaluation of the Webb correction using density-weighted averages: Comment zu diesem Artikel von F. Herbert in: Journal of hydrology 173 (1995) S.443-344
Results from a re-evaluation of the flux correction suggested by Webb et al. (Q. J. R. Meteorol. Soc., 106, 85-100, 1980) are presented and discussed. This re-evaluation is based on the equation of continuity as well as the budget equations for dry air, water vapour and atmospheric trace species, where a density-weighted averaging procedure introduced by Hesselberg (Beitr. Phys. fr. Atmos., 12, 141-160, 1926) is used. This averaging procedure seems to be more appropriate than that of Reynolds, especially in the case of atmospheric trace species. The consequences of this flux correction as regards the exchange of atmospheric trace gases between the atmosphere and the ground (vegetation, soil and water) are pointed out
