26 research outputs found

    Adenovirus-host interactions : implications for tropism and therapy

    No full text
    Human adenoviruses (HAdVs) are common viruses often associated withgastrointestinal, ocular and respiratory infections. They can infect a widevariety of cells, both dividing and non-dividing. HAdVs attach to and infecttarget cells through interactions with cellular receptors. It has also beenshown that HAdVs can use soluble host components in body fluids forindirect binding to target cells, a feature that enables the usage of new typesof receptors resulting in a more efficient HAdV infection. We thereforeevaluated the influence of soluble components from four different bodyfluids on HAdV infection of epithelial cells, representing the respiratory andocular tropism of most HAdVs. We found that plasma, saliva, and tear fluidpromote binding and infection of HAdV-5 (species C) and that plasmapromotes infection of HAdV-31 (species A). Further binding and infectionexperiments identified coagulation factor IX (FIX) and X (FX) as thecomponents of plasma responsible for increase of HAdV-5 infection whileFIX alone mediates increase of HAdV-31 infection. We found that as little as1% of the physiological concentration of these factors is required to facilitatemaximum binding. The effect of coagulation factors on HAdV infection was thereafterextended to include all species A HAdVs: HAdV-12, -18 and -31. Species AHAdVs normally cause infections involving the airways and/or the intestine.These infections are often mild but species A HAdVs in general, and HAdV-31 in particular, have been shown to cause severe and life-threateninginfections in immunocompromised patients. We show here that FIXefficiently increase HAdV-18 and -31 (but not HAdV-12) binding andinfection of human epithelial cells, representing the respiratory andgastrointestinal tropism. FIX was shown to interact with the hexon proteinof HAdV-31 and surface plasmon resonance analysis revealed that theHAdV-31:FIX interaction is slightly stronger than that of the HAdV-5:FIX/FX interactions, but more interestingly, the half-lives of theseinteractions are profoundly different. By performing binding and infectionexperiments using cells expressing specific glycosaminoglycans (GAGs) and ivGAG-cleaving enzymes we found that the HAdV-31:FIX and HAdV-5:FIX/FX complexes bind to heparan sulfate-containing GAGs on targetcells, but we could also see a difference in GAG dependence and specificitybetween these complexes.We conclude that the use of coagulation factors might be of moreimportance than previously recognized and that this may affect not only theliver tropism seen when administering adenovirus vectors into thecirculation but also regulate primary infections by wild-type viruses of theirnatural target cells. We also believe that our findings may contribute tobetter design of HAdV-based vectors for gene and cancer therapy and thatthe interaction between the HAdV-31 hexon and FIX may serve as a targetfor antiviral treatment. HAdV vectors are mainly based on HAdV-5 and several problems haverecently become evident when using these vectors. Major challenges withHAdV-5 based vectors include pre-existing neutralizing antibodies, pooraccess to the receptor CAR (coxsackie and adenovirus receptor), and offtarget effects to the liver due to interactions with coagulation factors. Theneed for new HAdV vectors devoid of these problems is evident.HAdV-52 is one of only three HAdVs that are equipped with two differentfiber proteins, one long and one short. We show here, by means of bindingand infection experiments, that HAdV-52 can use CAR as a cellular receptor,but that most of the binding is dependent on sialic acid-containingglycoproteins. Flow cytometry, ELISA and surface plasmon resonanceanalyses revealed that the terminal knob domain of the long fiber (52LFK)binds to CAR, and the knob domain of the short fiber (52SFK) binds tosialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complexwith sialic acid revealed a new sialic acid binding site compared to otherknown adenovirus:glycan interactions. Moreover, glycan array analysisidentified α2,8-linked oligosialic acid, mimicking the naturally occurringpolysialic acid (PSia), as a potential sialic acid-containing glycan receptor for52SFK. ELISA and surface plasmon resonance confirmed the ability of52SFK to interact with PSia. Flow cytometry analysis also showed a fivefold vincrease in binding of 52SFK to PSia-expressing cells compared to controlcells. X-ray crystallographic analysis of 52SFK in complex with oligo-PSiarevealed engagement at the non-reducing end of oligo-PSia to the canonicalsialic acid-binding site, but also suggested the presence of a 'steering rim'consisting of positively charged amino acids contributing to the contact bylong-range electrostatic interactions. PSia is nearly absent on cells in healthy adults but can be expressed inhigh amounts on several types of cancers including: glioma, neuroblastomaand lung cancer. We show here that the short fiber of HAdV-52 bindsspecifically to PSia. Taking into account that HAdV-52 has a supposedly lowseroprevalence and is incapable of interacting with coagulation factors webelieve that HAdV-52 based vectors can be useful for treatment of cancertypes with elevated PSia expression

    The structure of enteric human adenovirus 41 : A leading cause of diarrhea in children

    No full text
    Human adenovirus (HAdV) types F40 and F41 are a prominent cause of diarrhea and diarrhea-associated mortality in young children worldwide. These enteric HAdVs differ notably in tissue tropism and pathogenicity from respiratory and ocular adenoviruses, but the structural basis for this divergence has been unknown. Here, we present the first structure of an enteric HAdV-HAdV-F41-determined by cryo-electron microscopy to a resolution of 3.8 angstrom. The structure reveals extensive alterations to the virion exterior as compared to nonenteric HAdVs, including a unique arrangement of capsid protein IX. The structure also provides new insights into conserved aspects of HAdV architecture such as a proposed location of core protein V, which links the viral DNA to the capsid, and assembly-induced conformational changes in the penton base protein. Our findings provide the structural basis for adaptation of enteric HAdVs to a fundamentally different tissue tropism

    Coagulation Factors IX and X Enhance Binding and Infection of Adenovirus Types 5 and 31 in Human Epithelial Cells▿

    No full text
    Most adenoviruses bind directly to the coxsackie and adenovirus receptor (CAR) on target cells in vitro, but recent research has shown that adenoviruses can also use soluble components in body fluids for indirect binding to target cells. These mechanisms have been identified upon addressing the questions of how to de- and retarget adenovirus-based vectors for human gene and cancer therapy, but the newly identified mechanisms also suggest that the role of body fluids and their components may also be of importance for natural, primary infections. Here we demonstrate that plasma, saliva, and tear fluid promote binding and infection of adenovirus type 5 (Ad5) in respiratory and ocular epithelial cells, which corresponds to the natural tropism of most adenoviruses, and that plasma promotes infection by Ad31. By using a set of binding and infection experiments, we also found that Ad5 and Ad31 require coagulation factors IX (FIX) or X (FX) or just FIX, respectively, for efficient binding and infection. The concentrations of these factors that were required for maximum binding were 1/100th of the physiological concentrations. Preincubation of virions with heparin or pretreatment of cells with heparinase I indicated that the role of cell surface heparan sulfate during FIX- and FX-mediated adenovirus binding and infection is mechanistically serotype specific. We conclude that the use of coagulation factors by adenoviruses may be of importance not only for the liver tropism seen when administering adenovirus vectors to the circulation but also during primary infections by wild-type viruses of their natural target cell types

    Lactoferrin-Hexon Interactions Mediate CAR-Independent Adenovirus Infection of Human Respiratory Cells

    Get PDF
    Virus entry into host cells is a complex process that is largely regulated by access to specific cellular receptors. Human adenoviruses (HAdVs) and many other viruses use cell adhesion molecules such as the coxsackievirus and adenovirus receptor (CAR) for attachment to and entry into target cells. These molecules are rarely expressed on the apical side of polarized epithelial cells, which raises the question of how adenoviruses—and other viruses that engage cell adhesion molecules—enter polarized cells from the apical side to initiate infection. We have previously shown that species C HAdVs utilize lactoferrin—a common innate immune component secreted to respiratory mucosa—for infection via unknown mechanisms. Using a series of biochemical, cellular, and molecular biology approaches, we mapped this effect to the proteolytically cleavable, positively charged, N-terminal 49 residues of human lactoferrin (hLF) known as human lactoferricin (hLfcin). Lactoferricin (Lfcin) binds to the hexon protein on the viral capsid and anchors the virus to an unknown receptor structure of target cells, resulting in infection. These findings suggest that HAdVs use distinct cell entry mechanisms at different stages of infection. To initiate infection, entry is likely to occur at the apical side of polarized epithelial cells, largely by means of hLF and hLfcin bridging HAdV capsids via hexons to as-yet-unknown receptors; when infection is established, progeny virions released from the basolateral side enter neighboring cells by means of hLF/hLfcin and CAR in parallel. IMPORTANCE: Many viruses enter target cells using cell adhesion molecules as receptors. Paradoxically, these molecules are abundant on the lateral and basolateral side of intact, polarized, epithelial target cells, but absent on the apical side that must be penetrated by incoming viruses to initiate infection. Our study provides a model whereby viruses use different mechanisms to infect polarized epithelial cells depending on which side of the cell—apical or lateral/basolateral—is attacked. This study may also be useful to understand the biology of other viruses that use cell adhesion molecules as receptors

    Heparan Sulfate Is a Cellular Receptor for Enteric Human Adenoviruses.

    No full text
    Human adenovirus (HAdV)-F40 and -F41 are leading causes of diarrhea and diarrhea-associated mortality in children under the age of five, but the mechanisms by which they infect host cells are poorly understood. HAdVs initiate infection through interactions between the knob domain of the fiber capsid protein and host cell receptors. Unlike most other HAdVs, HAdV-F40 and -F41 possess two different fiber proteins-a long fiber and a short fiber. Whereas the long fiber binds to the Coxsackievirus and adenovirus receptor (CAR), no binding partners have been identified for the short fiber. In this study, we identified heparan sulfate (HS) as an interaction partner for the short fiber of enteric HAdVs. We demonstrate that exposure to acidic pH, which mimics the environment of the stomach, inactivates the interaction of enteric adenovirus with CAR. However, the short fiber:HS interaction is resistant to and even enhanced by acidic pH, which allows attachment to host cells. Our results suggest a switch in receptor usage of enteric HAdVs after exposure to acidic pH and add to the understanding of the function of the short fibers. These results may also be useful for antiviral drug development and the utilization of enteric HAdVs for clinical applications such as vaccine development

    The Phosphatidylserine Receptor TIM-1 Enhances Authentic Chikungunya Virus Cell Entry

    No full text
    Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced cell binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells

    BAF45b is required for efficient zika virus infection of HAP1 cells

    Get PDF
    The 2016 Zika virus (ZIKV) epidemic illustrates the impact of flaviviruses as emerging human pathogens. For unknown reasons, ZIKV replicates more efficiently in neural progenitor cells (NPCs) than in postmitotic neurons. Here, we identified host factors used by ZIKV using the NCI-60 library of cell lines and COMPARE analysis, and cross-analyzed this library with two other libraries of host factors with importance for ZIKV infection. We identified BAF45b, a subunit of the BAF (Brg1/Brm-associated factors) protein complexes that regulate differentiation of NPCs to post-mitotic neurons. ZIKV (and other flaviviruses) infected HAP1 cells deficient in expression of BAF45b and other BAF subunits less efficiently than wildtype (WT) HAP1 cells. We concluded that subunits of the BAF complex are important for infection of ZIKV and other flavivirus. Given their function in cell and tissue differentiation, such regulators may be important determinants of tropism and pathogenesis of arthropod-borne flaviviruses

    The envelope protein of tick-borne encephalitis virus influences neuron entry, pathogenicity, and vaccine protection

    No full text
    Background Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. Method Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN (R) and Encepur (R) or combined were evaluated. Results We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Toro. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Toro and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN (R) and Encepur (R). As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. Conclusions Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Toro infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals

    Cholesterol sensing by CD81 is important for hepatitis C virus entry

    Get PDF
    CD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus (HCV). Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81–cholesterol association but had disparate effects on HCV entry, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified a potential allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol-unbound) or closed (cholesterol-bound) conformation. The open mutant of CD81 exhibited reduced HCV receptor activity, whereas the closed mutant enhanced activity. These data are consistent with cholesterol sensing switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81–partner protein networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry, and CD81's function as a molecular scaffold; these insights are relevant to CD81's varied roles in both health and disease
    corecore