229 research outputs found

    Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    Get PDF
    General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. A B S T R A C T Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure. This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between MCA V mean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O 2 Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age-and gender-matched controls during leg crossing. In the patients, leg crossing increased MAP from 58 (42-79) In the control subjects, CO increased 11 % (P < 0.05) with no change in TPR. By contrast, in the patients, CO increased 9 % (P < 0.05), but also TPR increased by 13 % (P < 0.05). In conclusion, leg crossing improves cerebral perfusion and oxygenation both in patients with sympathetic failure and in healthy subjects. However, in healthy subjects, cerebral perfusion and oxygenation were improved by a rise in CO without significant changes in TPR or MAP, whereas in patients with sympathetic failure, cerebral perfusion and oxygenation were improved through a rise in MAP due to increments in both CO and TPR

    Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    Get PDF
    A B S T R A C T Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure. This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between MCA V mean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O 2 Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age-and gender-matched controls during leg crossing. In the patients, leg crossing increased MAP from 58 (42-79) to 72 (52-89) compared with 84 (70-95) to 90 (74-94) mmHg in the controls. MCA V mean increased from 55 (38-77) to 63 (45-80) and from 56 (46-77) to 64 (46-80) cm/s respectively (P < 0.05), with a larger rise in O 2 Hb [1.12 (0.52-3.27)] in the patients compared with the controls [0.83 (− 0.11 to 2.04) μmol/l]. In the control subjects, CO increased 11 % (P < 0.05) with no change in TPR. By contrast, in the patients, CO increased 9 % (P < 0.05), but also TPR increased by 13 % (P < 0.05). In conclusion, leg crossing improves cerebral perfusion and oxygenation both in patients with sympathetic failure and in healthy subjects. However, in healthy subjects, cerebral perfusion and oxygenation were improved by a rise in CO without significant changes in TPR or MAP, whereas in patients with sympathetic failure, cerebral perfusion and oxygenation were improved through a rise in MAP due to increments in both CO and TPR

    Pheochromocytoma and paraganglioma: Clinical feature based disease probability in relation to catecholamine biochemistry and reason for disease suspicion

    Full text link
    OBJECTIVE Hypertension and symptoms of catecholamine excess are features of pheochromocytomas and paragangliomas (PPGLs). This prospective observational cohort study assessed whether differences in presenting features in patients tested for PPGLs might assist establishing likelihood of disease. DESIGN AND METHODS Patients were tested for PPGLs because of signs and symptoms, an incidental mass on imaging or routine surveillance due to previous history or hereditary risk. Patients with (n=245) compared to without (n=1820) PPGLs were identified on follow-up. Differences in presenting features were then examined to assess probability of disease and relationships to catecholamine excess. RESULTS Hyperhidrosis, palpitations, pallor, tremor and nausea were 30-90% more prevalent (P<0.001) among patients with than without PPGLs, whereas headache, flushing and other symptoms showed little or no differences. Although heart rates were higher (P<0.0001) in patients with than without PPGLs, blood pressures were not higher and were positively correlated to body mass index (BMI), which was lower (P<0.0001) in patients with than without PPGLs. From these differences in clinical features, a score system was established that indicated a 5.8-fold higher probability of PPGLs in patients with high than low scores. Higher scores among patients with PPGLs were associated, independently of tumor size, with higher biochemical indices of catecholamine excess. CONCLUSIONS This study identifies a complex of five signs and symptoms combined with lower BMI and elevated heart rate as key features in patients with PPGLs. Prevalences of these features, which reflect variable tumoral catecholamine production, may be used to triage patients according to likelihood of disease

    Determinants of disease-specific survival in patients with and without metastatic pheochromocytoma and paraganglioma

    Get PDF
    BACKGROUND: Pheochromocytomas and paragangliomas (PPGLs) have a heterogeneous prognosis, the basis of which remains unclear. We, therefore, assessed disease-specific survival (DSS) and potential predictors of progressive disease in patients with PPGLs and head/neck paragangliomas (HNPGLs) according to the presence or absence of metastases. METHODS: This retrospective study included 582 patients with PPGLs and 57 with HNPGLs. DSS was assessed according to age, location and size of tumours, recurrent/metastatic disease, genetics, plasma metanephrines and methoxytyramine. RESULTS: Among all patients with PPGLs, multivariable analysis indicated that apart from older age (HR = 5.4, CI = 2.93-10.29, P < 0.0001) and presence of metastases (HR = 4.8, CI = 2.41-9.94, P < 0.0001), shorter DSS was also associated with extra-adrenal tumour location (HR = 2.6, CI = 1.32-5.23, P = 0.0007) and higher plasma methoxytyramine (HR = 1.8, CI = 1.11-2.85, P = 0.0170) and normetanephrine (HR = 1.8, CI = 1.12-2.91, P = 0.0160). Among patients with HNPGLs, those with metastases presented with longer DSS compared to patients with metastatic PPGLs (33.4 versus 20.2 years, P < 0.0001) and only plasma methoxytyramine (HR = 13, CI = 1.35-148, P = 0.0380) was an independent predictor of DSS. For patients with metastatic PPGLs, multivariable analysis revealed that apart from older age (HR = 6.2, CI = 3.20-12.20, P < 0.0001), shorter DSS was associated with the presence of synchronous metastases (HR = 4.9, CI = 2.78-8.80, P < 0.0001), higher plasma methoxytyramine (HR = 2.4, CI = 1.44-4.14, P = 0.0010) and extensive metastatic burden (HR = 2.1, CI = 1.07-3.79, P = 0.0290). CONCLUSIONS: DSS among patients with PPGLs/HNPGLs relates to several presentations of the disease that may provide prognostic markers. In particular, the independent associations of higher methoxytyramine with shorter DSS in patients with HNPGLs and metastatic PPGLs suggest the utility of this biomarker to guide individualized management and follow-up strategies in affected patients

    Efficacy of alpha-Blockers on Hemodynamic Control during Pheochromocytoma Resection:A Randomized Controlled Trial

    Get PDF
    CONTEXT: Pretreatment with α-adrenergic receptor blockers is recommended to prevent hemodynamic instability during resection of a pheochromocytoma or sympathetic paraganglioma (PPGL). OBJECTIVE: To determine which type of α-adrenergic receptor blocker provides the best efficacy. DESIGN: Randomized controlled open-label trial (PRESCRIPT; ClinicalTrials.gov NCT01379898). SETTING: Multicenter study including 9 centers in The Netherlands. PATIENTS: 134 patients with non-metastatic PPGL. INTERVENTION: phenoxybenzamine or doxazosin starting 2-3 weeks before surgery using a blood pressure targeted titration schedule. Intraoperative hemodynamic management was standardized. MAIN OUTCOME MEASURES: Primary efficacy endpoint was the cumulative intraoperative time outside the blood pressure target range (i.e., SBP >160 mmHg or MAP <60 mmHg) expressed as a percentage of total surgical procedure time. Secondary efficacy endpoint was the value on a hemodynamic instability score. RESULTS: Median cumulative time outside blood pressure targets was 11.1% [IQR: 4.3-20.6] in the phenoxybenzamine group compared to 12.2% [5.3-20.2] in the doxazosin group (P=0.75, r=0.03). The hemodynamic instability score was 38.0 [28.8-58.0] and 50.0 [35.3-63.8] in the phenoxybenzamine and doxazosin group, respectively (P=0.02, r=0.20). The 30-day cardiovascular complication rate was 8.8% and 6.9% in the phenoxybenzamine and doxazosin group, respectively (P=0.68). There was no mortality after 30 days. CONCLUSIONS: The duration of blood pressure outside the target range during resection of a PPGL was not different after preoperative treatment with either phenoxybenzamine or doxazosin. Phenoxybenzamine was more effective in preventing intraoperative hemodynamic instability, but it could not be established whether this was associated with a better clinical outcome

    Impact of 123 I-MIBG scintigraphy on clinical decision making in pheochromocytoma and paraganglioma

    Full text link
    CONTEXT Cross sectional imaging with computed tomography (CT) or magnetic resonance imaging (MRI) is regarded as a first-choice modality for tumor localization in patients with pheochromocytoma and paraganglioma (PPGL). 123I-labeled metaiodobenzylguanidine (123I-MIBG) is widely used for functional imaging but the added diagnostic value is controversial. OBJECTIVE To establish the virtual impact of adding 123I-MIBG scintigraphy to CT or MRI on diagnosis and treatment of PPGL. DESIGN International multicenter retrospective study. INTERVENTION None. PATIENTS 236 unilateral adrenal, 18 bilateral adrenal, 48 unifocal extra-adrenal, 12 multifocal and 26 metastatic PPGL. MAIN OUTCOME MEASURES Patients underwent both anatomical imaging (CT and/or MRI) and 123I-MIBG scintigraphy. Local imaging reports were analyzed centrally by two independent observers who were blinded to the diagnosis. Imaging-based diagnoses determined by CT/MRI only, 123I-MIBG only, and CT/MRI combined with 123I-MIBG scintigraphy were compared with the correct diagnoses. RESULTS The rates of correct imaging-based diagnoses determined by CT/MRI only versus CT/MRI plus 123I-MIBG scintigraphy were similar: 89.4 versus 88.8%, respectively, (P=0.50). Adding 123I-MIBG scintigraphy to CT/MRI resulted in a correct change in the imaging-based diagnosis and ensuing virtual treatment in four cases (1.2%: two metastatic instead of non-metastatic, one multifocal instead of single, one unilateral instead of bilateral adrenal) at the cost of an incorrect change in seven cases (2.1%: four metastatic instead of non-metastatic, two multifocal instead of unifocal and one bilateral instead of unilateral adrenal). CONCLUSIONS For the initial localization of PPGL, the addition of 123I-MIBG scintigraphy to CT/MRI rarely improves the diagnostic accuracy at the cost of incorrect interpretation in others, even when 123I-MIBG scintigraphy is restricted to patients who are at risk for metastatic disease. In this setting, the impact of 123I-MIBG scintigraphy on clinical decision-making appears very limited
    corecore