7 research outputs found
Examining racial and ethnic disparities in adult emergency department patient visits for concussion in the United States
Background Racial and ethnic differences in emergency department (ED) visits have been reported among adolescent patients but are unsubstantiated among adults. Therefore, our purpose in this study was to examine the relationship between race/ethnicity and adult ED visits for concussions, their injury mechanisms, and computed tomography (CT) scan use among a nationally representative sample. Methods We used the National Hospital Ambulatory Medical Care Survey database from 2010–2015 to examine 63,725 adult (20–45 years old) patient visits, representing an estimated 310.6 million visits presented to EDs. Of these visits, 884 (4.5 million national estimate) were diagnosed with a concussion. Visit records detailed patient information (age, sex, race/ethnicity, geographic region, primary payment type), ED visit diagnoses, injury mechanism (sport, motor vehicle, fall, struck by or against, “other”), and head CT scan use. The primary independent variable was race/ethnicity (non-Hispanic Asian, non-Hispanic Black or African American, Hispanic/Latinx, non-Hispanic multiracial or another, and non-Hispanic White). We used multivariable logistic and multinomial regression models with complex survey sampling design weighting to examine the relationship between concussion ED visits, injury mechanisms, and CT scan use separately by race/ethnicity while accounting for covariates. Results There were no associations between race/ethnicity and concussion diagnosis among adult ED visits after accounting for covariates. Relative to sports-related injuries, non-Hispanic Black or African American patient visits were associated with a motor vehicle (OR = 2.69, 95% CI: 1.06–6.86) and “other” injury mechanism (OR = 4.58, 95% CI: 1.34–15.69) compared to non-Hispanic White patients. Relative to sports-related injuries, non-Hispanic Asian, multiracial, or patients of another race had decreased odds of falls (OR = 0.20, 95% CI: 0.04–0.91) and “other” injuries (OR = 0.09, 95% CI: 0.01–0.55) compared to non-Hispanic White patients. The odds of a CT scan being performed were significantly lower among Hispanic/Latinx patient visits relative to non-Hispanic White patients (OR = 0.52, 95% CI: 0.30–0.91), while no other race/ethnicity comparisons differed. Conclusion Our findings indicate that the overarching concussion ED visit likelihood may not differ by race/ethnicity in adults, but the underlying mechanism causing the concussion and receiving a CT scan demonstrates considerable differences. Prospective future research is warranted to comprehensively understand and intervene in the complex, multi-level race/ethnicity relationships related to concussion health care to ensure equitable patient treatment
Recommended from our members
The Effects of On-Field Heat Index and Altitude on Concussion Assessments and Recovery Among NCAA Athletes
Recent literature has indicated altitude may be a protective factor for concussion but it is unknown whether altitude or heat index affects recovery.
To examine whether on-field heat index and altitude at the time of injury alter acute (< 48 h) concussion assessments, days-to-asymptomatic, and days-to-return-to-play in collegiate athletes following concussion.
Collegiate athletes (n = 187; age = 19.7 ± 1.4 years; male = 70.6%) underwent baseline assessments across 30 universities and experienced a concussion in this retrospective cohort study. Altitude (m) and heat index (°C) at the time and location of injury were determined using valid online database tools. Acute concussion assessments included the Sport Concussion Assessment Tool (SCAT) symptom inventory, Balance Error Scoring System (BESS), and the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT). We used multiple linear regression models to determine whether heat index and altitude predicted each acute assessment outcome, days-to-asymptomatic, and days-to-return-to-play.
Collegiate athletes were concussed at a 181.1 m (range - 0.6 to 2201.9 m) median altitude and 17.8 °C (range - 6.1 to 35.6 °C) median heat index. Altitude did not predict (p ≥ 0.265) any outcomes. Every one-degree increase in heat index reduced days-to-asymptomatic (p = 0.047; R
 = 0.06) and days-to-return-to-play (p = 0.006; R
 = 0.09) by 0.05 and 0.14 days, respectively. Heat index and altitude did not explain significant variance in SCAT, BESS, and ImPACT composite scores (p's = 0.20-0.922).
Our findings suggest that on-field altitude and heat index at the time of injury do not contribute to clinically meaningful changes on acute assessments or concussion recovery. On-field altitude and heat index do not appear to significantly alter assessment outcomes or clinical recovery, suggesting that environmental factors at altitudes below < 2500 m are negligible outcomes for researchers and clinicians to consider post-concussion
sj-pdf-1-ajs-10.1177_03635465231184390 – Supplemental material for Longitudinal Assessment of Postconcussion Driving
Supplemental material, sj-pdf-1-ajs-10.1177_03635465231184390 for Longitudinal Assessment of Postconcussion Driving by Julianne D. Schmidt, Robert C. Lynall, Landon B. Lempke, L. Stephen Miller, Russell K. Gore and Hannes Devos in The American Journal of Sports Medicine</p
Recommended from our members
Optimizing Order of Administration for Concussion Baseline Assessment Among NCAA Student-Athletes and Military Cadets
Concussion pre-injury (i.e., baseline) assessments serve as a benchmark comparison point in the event an individual sustains a concussion and allows clinicians to compare to post-injury measures. However, baseline assessments must reflect the individual's true and most optimized performance to serve as a useful comparison. Mental fatigue and motivation throughout baseline testing may alter individual assessment performance, indicating an order of administration (OoA) may play an influential role in assessment outcomes.
To examine the influence concussion baseline battery OoA has on symptom, postural stability, cognitive screening, and computerized neurocognitive test outcomes.
We employed a retrospective observational cohort study to examine healthy collegiate student-athletes and military cadets (n = 2898, 19.0 ± 1.4 years, 66.1% male, 75.6% white, 54.4% Division-I) baseline assessment performance on the Sport Concussion Assessment Tool (SCAT; total symptom number and severity), Balance Error Scoring System (BESS; total error scores), Standardized Assessment of Concussion (SAC; total score), and Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) domain scores (verbal and visual memory, visual-motor speed, reaction time). Assessments were binned to beginning, middle, or end tertiles based upon OoA. We used one-way ANOVAs with Tukey post-hoc t tests, 95% confidence intervals (CI), and Cohen's d effect sizes for significant models (α = 0.05).
SCAT total symptom number (mean difference = 2.23; 95% CI 1.76-2.70; d = 0.49, p < 0.001) and severity (mean difference = 5.58; 95% CI 4.42-6.74; d = 0.50; p < 0.001) were lower when completed at the end of baseline testing compared to the middle. Total BESS errors were 1.06 lower when completed at the middle relative to the end (95% CI 0.43-1.69; d = 0.17; p = 0.001). Total SAC scores were better at the beginning relative to middle (mean difference = 0.58; 95% CI 0.25-0.90; d = 0.33; p < 0.001) and end (mean difference = 0.44; 95% CI 0.16-0.73; d = 0.24; p = 0.001). Verbal memory, visual memory, and reaction time performance were highest at the beginning (p ≤ 0.002), while visual-motor speed performance was highest at the middle (p = 0.001).
Completing baseline assessments in the order of (1) ImPACT, (2) SAC, (3) BESS, and (4) SCAT symptom checklist may improve performance across assessments collectively. Clinicians and researchers should consider completing baseline assessments in this order when possible to potentially aid in optimizing concussion baseline assessment performance and maximize post-concussion comparisons