3,000 research outputs found

    The abundance of boron in evolved A- and B-type stars

    Get PDF
    Boron abundances in A- and B-type stars may be a successful way to track evolutionary effects in these hot stars. The light elements -- Li, Be, and B -- are tracers of exposure to temperatures more moderate than those in which the H-burning CN-cycle operates. Thus, any exposure of surface stellar layers to deeper layers will affect these light element abundances. Li and Be are used in this role in investigations of evolutionary processes in cool stars, but are not observable in hotter stars. An investigation of boron, however, is possible through the B II 1362=C5 resonance line. We have gathered high resolution spectra from the IUE database of A- and B-type stars near 10~M_\odot for which nitrogen abundances have been determined (by Gies & Lambert, 1992, and Venn 1995). The B II 1362=C5 line is blended throughout the temperature range of this program, requiring spectrum syntheses to recover the boron abundances. For no star could we synthesize the 1362=C5 region using the meteoritic/solar boron abundance of log(B) =3D 2.88 (Anders & Grevesse 1989); a lower boron abundance was necessary which may reflect evolutionary effects (e.g., mass loss or mixing near the main-sequence), the natal composition of the star forming regions, or a systematic error in the analyses (e.g., non-LTE effects). Regardless of the initial boron abundance, and despite the possibility of non-LTE effects, it seems clear that boron is severely depleted in some stars. It may be that the nitrogen and boron abundances are anticorrelated, as would be expected from mixing between the H-burning and outer stellar layers. If, as we suspect, a residue of boron is present in the A-type supergiants, we may exclude a scenario in which mixing occurs continuously between the surface and the dee

    Modelling photometric reverberation data -- a disk-like broad-line region and a potentially larger black hole mass for 3C120

    Full text link
    We consider photometric reverberation mapping, where the nuclear continuum variations are monitored via a broad-band filter and the echo of emission line clouds of the broad line region (BLR) is measured with a suitable narrow-band (NB) filter. We investigate how an incomplete emission-line coverage by the NB filter influences the BLR size determination. This includes two basic cases: 1) a symmetric cut of the blue and red part of the line wings, and 2) the filter positioned asymmetrically to the line centre so that essentially a complete half of the emission line is contained in the NB filter. Under the assumption that the BLR size is dominated by circular Keplerian orbits, we find that symmetric cutting of line wings may lead to overestimating the BLR size by less than 5%. The case of asymmetric half-line coverage, similar as for our data of the Seyfert 1 galaxy 3C120, yields the BLR size with a bias of less than 1%. Our results suggest that any BLR size bias due to narrow-band line cut in photometric reverberation mapping is small and in most cases negligible. We used well sampled photometric reverberation mapping light curves with sharp variation features in both the continuum and the Hbeta light curves to determine the geometry type of the Hbeta BLR for 3C120. Modelling of the light curve, under the assumption that the BLR is essentially virialised, argues against a spherical geometry and favours a nearly face-on disk-like geometry with inclination i = 10 +/- 4 deg and extension from 22 to 28 light days. The low inclination may lead to a larger black hole mass than the derived when using the average geometry scaling factor f=5.5. We discuss deviations of Seyfert 1 galaxies from the M_BH - sigma relation.Comment: 9 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Far-Infrared Emission from Intracluster Dust in Abell Clusters

    Get PDF
    The ISOPHOT instrument aboard ISO has been used to observe extended FIR emission of six Abell clusters. The raw profiles of the I_(120 um) / I_(180 um) surface brightness ratio including zodiacal light show a bump towards Abell 1656 (Coma), dips towards Abell 262 and Abell 2670, and are without clear structure towards Abell 400, Abell 496, and Abell 4038. After subtraction of the zodiacal light, the bump towards Abell 1656 is still present, while the dips towards Abell 262 and Abell 2670 are no longer noticable. This indicates a localized excess of emitting material outside the Galaxy towards Abell 1656, while the behavior in Abell 262 and Abell 2670 can be reconciled with galactic cirrus structures localized on the line-of-sight to these clusters. The excess towards Abell 1656 (Coma) is interpreted as thermal emission from intracluster dust distributed in the hot X-ray emitting intracluster medium. The absence of any signature for intracluster dust in five clusters and the rather low inferred dust mass in Abell 1656 indicates that intracluster dust is likely not responsible for the excess X-ray absorption seen in cooling flow clusters. These observations thereby represent a further unsuccessful attempt in detecting the presumed final stage of the cooling flow material, in accord with quite a number of previous studies in other wavelengths regions. Finally, the observed dimming of the high-redshift supernovae is unlikely be attributable to extinction caused by dust in the intracluster or even a presumed intercluster medium.Comment: 16 pages, 32 figures, accepted for publication in Astronomy & Astrophysic

    Dust reverberation-mapping of the Seyfert 1 galaxy WPVS48

    Full text link
    Using robotic telescopes of the Universitatssternwarte Bochum near Cerro Armazones in Chile, we monitored the z=0.0377 Seyfert 1 galaxy WPVS48 (2MASX J09594263-3112581) in the optical (B and R) and near-infrared (NIR, J and Ks) with a cadence of two days. The light curves show unprecedented variability details. The NIR variation features of WPVS48 are consistent with the corresponding optical variations, but the features appear sharper in the NIR than in the optical, suggesting that the optical photons undergo multiple scatterings. The J and Ks emission, tracing the hot (1600 K) dust echo, lags the B and R variations by on average 64 +/- 4 days and 71 +/- 5 days, respectively (restframe). WPVS48 lies on the known tau-M_V relationship. However, the observed lag is about three times shorter than expected from the dust sublimation radius r_sub inferred from the optical-UV luminosity, and explanations for this common discrepancy are searched for. The sharp NIR echos argue for a face-on torus geometry and allow us to put forward two potential scenarios: 1) as previously proposed, in the equatorial plane of the accretion disk the inner region of the torus is flattened and may come closer to the accretion disk. 2) The dust torus with inner radius r_sub is geometrically and optically thick, so that the observer only sees the facing rim of the torus wall, which lies closer to the observer than the torus equatorial plane and therefore leads to an observed foreshortened lag. Both scenarios are able to explain the factor three discrepancy between tau and r_sub. Longer-wavelength dust reverberation data might enable one to distinguish between the scenarios.Comment: 4 pages, 6 figures, Published in Astronomy and Astrophysic
    • …
    corecore