26 research outputs found

    Electro-Grafted Electrode with Graphene-Oxide-Like DNA Affinity for Ratiometric Homogeneous Electrochemical Biosensing of MicroRNA

    No full text
    This work demonstrated for the first time a simple and rapid approach to endow the electrode with the excellent discrimination ability over single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) through the robust electrochemical grafting of in situ generated 1-naphthalenesulfonate (NS<sup>–</sup>) diazonium salt onto the surface of indium tin oxide (ITO) electrode. On the basis of understanding the influence of sequence and length on the binding affinity of ssDNA and dsDNA toward NS<sup>–</sup> grafted ITO (NS<sup>–</sup>-ITO) electrode, these interesting findings were successfully employed to rationally develop a ratiometric homogeneous electrochemical biosensing platform for microRNA based on the affinity-mediated signal transduction. The achievement of ultrasensitive detection of microRNA lies in a compatibly designed T7 exonuclease-assisted isothermal amplification strategy, in which the presence of target microRNA initiated the continual and opposite affinity inversion of two rationally engineered electrochemical signal reporters, methylene blue (MB) labeled hairpin reporter and ferrocene (Fc) labeled dsDNA reporter, toward NS<sup>–</sup>-ITO electrode, thereby providing the ratiometric transduction and amplification of the homogeneous electrochemical output signal. By measuring the distinct variation in the peak current intensity ratios of Fc and MB tags, this ratiometric homogeneous electrochemical microRNA biosensing platform showed a detection limit of 25 aM, which is much lower than that of the reported homogeneous electrochemical biosensors. Therefore, we envision that the proposed approach will find useful applications in disease molecular diagnoses and biomedicine

    Porous Polyethersulfone-Supported Zeolitic Imidazolate Framework Membranes for Hydrogen Separation

    No full text
    ZIF-8 thin layer has been synthesized on the asymmetric porous polyethersulfone (PES) substrate via secondary seeded growth. Continuous and dense ZIF-8 layer, containing microcavities, has good affinity with the PES support. Single gas permeance was measured for H<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>, O<sub>2</sub>, and Ar at different pressure gradients and temperatures. Molecular sieving separation has been achieved for selectively separating hydrogen from larger gases. At 333 K, the H<sub>2</sub> permeance can reach ∼4 × 10<sup>–7</sup> mol m<sup>–2</sup> s<sup>–1</sup> Pa<sup>–1</sup>, and the ideal separation factors of H<sub>2</sub> from Ar, O<sub>2</sub>, N<sub>2</sub>, and CH<sub>4</sub> are 9.7, 10.8, 9.9, and 10.7, respectively. Long-term hydrogen permeance and H<sub>2</sub>/N<sub>2</sub> separation performance show the stable permeability of the derived membranes

    Ratiometric Catalyzed-Assembly of NanoCluster Beacons: A Nonenzymatic Approach for Amplified DNA Detection

    No full text
    In this work, a novel fluorescent transformation phenomenon of oligonucleotide-encapsulated silver nanoclusters (AgNCs) was demonstrated, in which green-emissive AgNCs effectively transformed to red-emissive AgNCs when placed in close proximity to a special DNA fragment (denoted as convertor here). Taking advantage of a catalyzed-hairpin-assembly (CHA) amplification strategy, we rationally and compatibly engineered a simple and sensitive AgNC-based fluorescent signal amplification strategy through the ratiometric catalyzed-assembly (RCA) of green-emissive NanoCluster Beacon (NCB) with a convertor modified DNA hairpin to induce the template transformation circularly. The proposed ratiometric fluorescent biosensing platform based on RCA-amplified NCB (RCA-NCB) emits intense green fluorescence in the absence of target DNA and will undergo consecutively fluorescent signal transformation from green emission to red emission upon exposure to its target DNA. The ratiometric adaptation of the NCB to CHA circuit advances their general usability as biosensing platform with great improvements in detection sensitivity. By measuring the fluorescence intensity ratio of the red emission and green emission, the proposed RCA-NCB platform exhibits sensitive and accurate analytical performance toward Werner Syndrome-relevant gene, the proof-of-concept target in this work. A low detection limit down to the pM level was achieved, which is lower than most of the reported AgNC-based fluorescent DNA biosensors, making the proposed RCA-NCB biosensing strategy appealing in amplifying the ratiometric fluorescent signal for sensitive DNA detection. Moreover, our proposed RCA-NCB platform shows good recovery toward the target DNA in real human serum samples, illustrating their potential promise for clinical and imaging applications in the future

    Layered Double Hydroxide Functionalized Textile for Effective Oil/Water Separation and Selective Oil Adsorption

    No full text
    The removal of oil and organic pollutants from water is highly desired due to frequent oil spill accidents, as well as the increase of industrial oily wastewater. Here, superhydrophobic and superoleophilic textile has been successfully prepared for the application of effective oil/water separation and selective oil adsorption. This textile was fabricated by functionalizing the commercial textile with layered double hydroxide (LDH) microcrystals and low surface energy molecules. The LDH microcrystals were immobilized on the microfibers of the textile through an in situ growth method, and they formed a nestlike microstructure. The combination of the hierarchical structure and the low surface energy molecules made the textile superhydrophobic and superoleophilic. Further experiments demonstrated that the as-prepared textile not only can be applied as effective membrane materials for the separation of oil and water mixtures with high separation efficiency (>97%), but also can be used as a bag for the selective oil adsorption from water. Thus, such superhydrophobic and superoleophilic textile is a very promising material for the application of oil spill cleanup and industrial oily wastewater treatment

    Versatile and Programmable DNA Logic Gates on Universal and Label-Free Homogeneous Electrochemical Platform

    No full text
    Herein, a novel universal and label-free homogeneous electrochemical platform is demonstrated, on which a complete set of DNA-based two-input Boolean logic gates (OR, NAND, AND, NOR, INHIBIT, IMPLICATION, XOR, and XNOR) is constructed by simply and rationally deploying the designed DNA polymerization/nicking machines without complicated sequence modulation. Single-stranded DNA is employed as the proof-of-concept target/input to initiate or prevent the DNA polymerization/nicking cyclic reactions on these DNA machines to synthesize numerous intact G-quadruplex sequences or binary G-quadruplex subunits as the output. The generated output strands then self-assemble into G-quadruplexes that render remarkable decrease to the diffusion current response of methylene blue and, thus, provide the amplified homogeneous electrochemical readout signal not only for the logic gate operations but also for the ultrasensitive detection of the target/input. This system represents the first example of homogeneous electrochemical logic operation. Importantly, the proposed homogeneous electrochemical logic gates possess the input/output homogeneity and share a constant output threshold value. Moreover, the modular design of DNA polymerization/nicking machines enables the adaptation of these homogeneous electrochemical logic gates to various input and output sequences. The results of this study demonstrate the versatility and universality of the label-free homogeneous electrochemical platform in the design of biomolecular logic gates and provide a potential platform for the further development of large-scale DNA-based biocomputing circuits and advanced biosensors for multiple molecular targets

    Layered Double Hydroxide Functionalized Textile for Effective Oil/Water Separation and Selective Oil Adsorption

    No full text
    The removal of oil and organic pollutants from water is highly desired due to frequent oil spill accidents, as well as the increase of industrial oily wastewater. Here, superhydrophobic and superoleophilic textile has been successfully prepared for the application of effective oil/water separation and selective oil adsorption. This textile was fabricated by functionalizing the commercial textile with layered double hydroxide (LDH) microcrystals and low surface energy molecules. The LDH microcrystals were immobilized on the microfibers of the textile through an in situ growth method, and they formed a nestlike microstructure. The combination of the hierarchical structure and the low surface energy molecules made the textile superhydrophobic and superoleophilic. Further experiments demonstrated that the as-prepared textile not only can be applied as effective membrane materials for the separation of oil and water mixtures with high separation efficiency (>97%), but also can be used as a bag for the selective oil adsorption from water. Thus, such superhydrophobic and superoleophilic textile is a very promising material for the application of oil spill cleanup and industrial oily wastewater treatment

    Truly Immobilization-Free Diffusivity-Mediated Photoelectrochemical Biosensing Strategy for Facile and Highly Sensitive MicroRNA Assay

    No full text
    In conventional photoelectrochemical (PEC) analysis, photoactive materials are usually immobilized on electrode surfaces, and such immobilization procedures are tedious and time-consuming, and it is also difficult to prepare electrodes with good reproducibility. To circumvent such limitations, we propose here a truly immobilization-free diffusivity-mediated PEC bionsensing strategy for microRNA assay, using methylene blue (MB) in solution as the photoactive probe, and nonmodified indium tin oxide (ITO) glass as the working electrode. The hybridization between the target microRNA and the MB-labeled single-stranded DNA probe (MB-DNA) triggers the digestion of MB-DNA by T7 exonuclease (T7 Exo), thus to generate MB-labeled mononucleotide, and then the released target microRNA initiates the subsequent cycling processes and generates a large amount of MB-labeled mononucleotides. Due to the diffusivity difference between MB-DNAs and MB-labeled mononucleotides, significantly increased photocurrent signal is observed for MB-labeled mononucleotides as compared to that of MB-DNAs. Therefore, via this “signal-on” mode and the T7 Exo facilitated signal amplification, a facile and highly sensitive immobilization-free PEC microRNA assay is readily realized, with a detection limit down to 27 aM. Moreover, this strategy exhibits excellent specificity and is successfully applied in detecting microRNA spiked in serum samples. Since all the reactions take place in homogeneous solutions and no electrode modification is needed, this PEC biosensing strategy exhibits the advantages of simplicity, rapidness, and good reproducibility. More significantly, it provides a novel concept to design truly immobilization-free PEC biosensing systems, and shows potential to be applied in bioanalysis and biochemical research

    Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification

    No full text
    As is well-known, graphene shows a remarkable difference in affinity toward nonstructured single-stranded (ss) DNA and double-stranded (ds) DNA. This property makes it popular to prepare DNA-based optical sensors. In this work, taking this unique property of graphene in combination with the sensitive electrochemical transducer, we report a novel affinity-mediated homogeneous electrochemical aptasensor using graphene modified glassy carbon electrode (GCE) as the sensing platform. In this approach, the specific aptamer-target recognition is converted into an ultrasensitive electrochemical signal output with the aid of a novel T7 exonuclease (T7Exo)-assisted target-analog recycling amplification strategy, in which the ingeniously designed methylene blue (MB)-labeled hairpin DNA reporters are digested in the presence of target and, then, converted to numerous MB-labeled long ssDNAs. The distinct difference in differential pulse voltammetry response between the designed hairpin reporters and the generated long ssDNAs on the graphene/GCE allows ultrasensitive detection of target biomolecules. Herein, the design and working principle of this homogeneous electrochemical aptasensor were elucidated, and the working conditions were optimized. The gel electrophoresis results further demonstrate that the designed T7Exo-assisted target-analog recycling amplification strategy can work well. This electrochemical aptasensor realizes the detection of biomolecule in a homogeneous solution without immobilization of any bioprobe on electrode surface. Moreover, this versatile homogeneous electrochemical sensing system was used for the determination of biomolecules in real serum samples with satisfying results

    Mixed Matrix Membranes with Strengthened MOFs/Polymer Interfacial Interaction and Improved Membrane Performance

    No full text
    MOFs-based mixed matrix membranes (MMMs) have attracted extensive attention in recent years due to their potential high separation performance, the low cost, and good mechanical properties. However, it is still very challenging to achieve defect-free interface between micrometer-sized MOFs and a polymer matrix. In this study, [Cd<sub>2</sub>L­(H<sub>2</sub>O)]<sub>2</sub>·5H<sub>2</sub>O (Cd-6F) synthesized using 4,4′-(hexafluoroisopropylidene)­diphthalic anhydride (6FDA) as an organic ligand was introduced into the 6FDA-ODA polyimide matrix to achieve novel MOF MMMs. A specific interfacial interaction between MOF crystals and polymer chains was innovatively targeted and achieved through in situ polymerization procedure. The enhanced adhesion between MOF particles and polymer phase was observed, and the improved interfacial interaction between Cd-6F and the 6FDA-ODA polyimide matrix was confirmed by detailed characterizations including FTIR and NMR. In the meantime, the gas permeance and selectivity of the MMMs are strongly dependent on their morphology. The MMM derived from in situ polymerization presents excellent interfaces between micrometer-sized MOF crystals and the polymer matrix, resulting in increased permeability and selectivity. The strategy shown here can be further utilized to select the MOF/polymer pair, eliminate interfacial voids, and improve membrane separation performance of MOFs-based MMMs
    corecore