80 research outputs found

    Preparation of a nano emodin transfersome and study on its anti-obesity mechanism in adipose tissue of diet-induced obese rats

    Get PDF
    OBJECTIVE: To describe the preparation of nano emodin transfersome (NET) and investigate its effect on mRNA expression of adipose triglyceride lipase (ATGL) and G0/G1 switch gene 2 (G0S2) in adipose tissue of diet-induced obese rats. METHODS: NET was prepared by film-ultrasonic dispersion method. The effects of emodin components at different ratios on encapsulation efficiency were investigated.The NET envelopment rate was determined by ultraviolet spectrophotometry. The particle size and Zeta potential of NET were evaluated by Zetasizer analyzer. Sixty male SD rats were assigned to groups randomly. After 8-week treatment, body weight, wet weight of visceral fat and the percentage of body fat (PBF) were measured. Fasting blood glucose and serum lipid levels were determined. The adipose tissue section was HE stained, and the cellular diameter and quantity of adipocytes were evaluated by light microscopy. The mRNA expression of ATGL and G0S2 from the peri-renal fat tissue was assayed by RT-PCR. RESULTS: The appropriate formulation was deoxycholic acid sodium salt vs. phospholipids 1:8, cholesterol vs. phospholipids 1:3, vitamin Evs. phospholipids 1:20, and emodin vs. phospholipid 1:6. Zeta potential was −15.11 mV, and the particle size was 292.2 nm. The mean encapsulation efficiency was (69.35 ± 0.25)%. Compared with the obese model group, body weight, wet weight of visceral fat, PBF and mRNA expression of G0S2 from peri-renal fat tissue were decreased significantly after NET treatment (all P < 0.05), while high-density lipoprotein cholesterol (HDL-C), the diameter of adipocytes and mRNA expression of ATGL from peri-renal fat tissue were increased significantly (all P < 0.05). CONCLUSION: The preparation method is simple and reasonable. NET with negative electricity was small and uniform in particle size, with high encapsulation efficiency and stability. NET could reduce body weight and adipocyte size, and this effect was associated with the up-regulation of ATGL, down-regulation of G0S2 expression in the adipose tissue, and improved insulin sensitivity

    Carbon in Chinese grasslands : meta-analysis and theory of grazing effects

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MGlobally, livestock grazing is an important management factor influencing soil degradation, soil health and carbon (C) stocks of grassland ecosystems. However, the effects of grassland types, grazing intensity and grazing duration on C stocks are unclear across large geographic scales. To provide a more comprehensive assessment of how grazing drives ecosystem C stocks in grasslands, we compiled and analyzed data from 306 studies featuring four grassland types across China: desert steppes, typical steppes, meadow steppes and alpine steppes. Light grazing was the best management practice for desert steppes (< 2 sheep ha−1) and typical steppes (3 to 4 sheep ha−1), whereas medium grazing pressure was optimal for meadow steppes (5 to 6 sheep ha−1) and alpine steppes (7 to 8 sheep ha−1) leading to the highest ecosystem C stocks under grazing. Plant biomass (desert steppes) and soil C stocks (meadow steppes) increased under light or medium grazing, confirming the 'intermediate disturbance hypothesis'. Heavy grazing decreased all C stocks regardless of grassland ecosystem types, approximately 1.4 Mg ha−1 per year for the whole ecosystem. The regrowth and regeneration of grasslands in response to grazing intensity (i.e., grazing optimization) depended on grassland types and grazing duration. In conclusion, grassland grazing is a double-edged sword. On the one hand, proper management (light or medium grazing) can maintain and even increase C stocks above- and belowground, and increase the harvested livestock products from grasslands. On the other hand, human-induced overgrazing can lead to rapid degradation of vegetation and soils, resulting in significant carbon loss and requiring long-term recovery. Grazing regimes (i.e., intensity and duration applied) must consider specific grassland characteristics to ensure stable productivity rates and optimal impacts on ecosystem C stocks

    Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice

    Get PDF
    Pre-harvest sprouting (PHS) or vivipary in cereals is an important agronomic trait that results in significant economic loss. A considerable number of mutations that cause PHS have been identified in several species. However, relatively few viviparous mutants in rice (Oryza sativa L.) have been reported. To explore the mechanism of PHS in rice, we carried out an extensive genetic screening and identified 12 PHS mutants (phs). Based on their phenotypes, these phs mutants were classified into three groups. Here we characterize in detail one of these groups, which contains mutations in genes encoding major enzymes of the carotenoid biosynthesis pathway, including phytoene desaturase (OsPDS), ζ-carotene desaturase (OsZDS), carotenoid isomerase (OsCRTISO) and lycopene β-cyclase (β-OsLCY), which are essential for the biosynthesis of carotenoid precursors of ABA. As expected, the amount of ABA was reduced in all four phs mutants compared with that in the wild type. Chlorophyll fluorescence analysis revealed the occurrence of photoinhibition in the photosystem and decreased capacity for eliminating excess energy by thermal dissipation. The greatly increased activities of reactive oxygen species (ROS) scavenging enzymes, and reduced photosystem (PS) II core proteins CP43, CP47 and D1 in leaves of the Oscrtiso/phs3-1 mutant and OsLCY RNAi transgenic rice indicated that photo-oxidative damage occurred in PS II, consistent with the accumulation of ROS in these plants. These results suggest that the impairment of carotenoid biosynthesis causes photo-oxidation and ABA-deficiency phenotypes, of which the latter is a major factor controlling the PHS trait in rice

    The Vertical Differences in the Change Rates and Controlling Factors of Soil Organic Carbon and Total Nitrogen along Vegetation Restoration in a Subtropical Area of China

    No full text
    The study was to investigate the change patterns of soil organic carbon (SOC), total nitrogen (TN), and soil C/N (C/N) in each soil sublayer along vegetation restoration in subtropical China. We collected soil samples in four typical plant communities along a restoration chronosequence. The soil physicochemical properties, fine root, and litter biomass were measured. Our results showed the proportion of SOC stocks (Cs) and TN stocks (Ns) in 20&ndash;30 and 30&ndash;40 cm soil layers increased, whereas that in 0&ndash;10 and 10&ndash;20 cm soil layers decreased. Different but well-constrained C/N was found among four restoration stages in each soil sublayer. The effect of soil factors was greater on the deep soil than the surface soil, while the effect of vegetation factors was just the opposite. Our study indicated that vegetation restoration promoted the uniform distribution of SOC and TN on the soil profile. The C/N was relatively stable along vegetation restoration in each soil layer. The accumulation of SOC and TN in the surface soil layer was controlled more by vegetation factors, while that in the lower layer was controlled by both vegetation factors and soil factors

    Integrated Sizing and Energy Management for Four-Wheel-Independently-Actuated Electric Vehicles Considering Realistic Constructed Driving Cycles

    No full text
    This paper presents an integrated optimization framework of sizing and energy management for four-wheel-independently-actuated electric vehicles. The optimization framework consists of an inner and an outer layer that are responsible for energy management, i.e., torque allocation, and powertrain parameter optimizations. The optimal torque allocation in the inner layer is achieved via the dynamic programming (DP) method while the desirable powertrain parameters in the outer layer are pursued based on the exhaustive method. In order to verify the proposed optimization framework, two driving cycles are constructed to represent the comprehensive and realistic driving conditions. One cycle is built by combining six typical driving cycles, which cover urban, high-way and rural driving styles to enhance representativeness. The other one is synthesized using the Markov chain method based on a vast quantity of real-time operating data of electric vehicles in Beijing. Simulation results demonstrate that the proposed strategy decreases the power consumption by 15.1% and 13.3%, respectively, in the two driving cycles, compared to the non-optimal, even-torque-allocation strategy

    Mitochondrial shuttling of CAP1 promotes actin- and cofilin-dependent apoptosis

    No full text
    Mitochondria play a central role in regulating apoptosis by releasing proapoptotic contents such as cytochrome c, and generating reactive oxygen species (ROS). Early in apoptosis, proteins translocate to mitochondria to promote the release of their contents. Here, we show that the actin- and cofilin-interacting protein CAP1 has a role in apoptosis. When we induced apoptosis, CAP1 rapidly translocated to the mitochondria independently of caspase activation. Translocation was proapoptotic because CAP1-knockdown cells were resistant to apoptosis inducers. Overexpression of wild-type CAP1 did not stimulate apoptosis on its own, but stimulated cofilin-induced apoptosis. Apoptosis induction required a mitochondrial-targeting domain, localized in the N-terminus and also the actin- binding domain in the C-terminus. Taken together, these studies suggest that CAP1 provides a direct link from the actin cytoskeleton to the mitochondria by functioning as an actin shuttle
    corecore