10,466 research outputs found
Optimal Population Codes for Space: Grid Cells Outperform Place Cells
Rodents use two distinct neuronal coordinate systems to estimate their position: place fields in the hippocampus and grid fields in the entorhinal cortex. Whereas place cells spike at only one particular spatial location, grid cells fire at multiple sites that correspond to the points of an imaginary hexagonal lattice. We study how to best construct place and grid codes, taking the probabilistic nature of neural spiking into account. Which spatial encoding properties of individual neurons confer the highest resolution when decoding the animal’s position from the neuronal population response? A priori, estimating a spatial position from a grid code could be ambiguous, as regular periodic lattices possess translational symmetry. The solution to this problem requires lattices for grid cells with different spacings; the spatial resolution crucially depends on choosing the right ratios of these spacings across the population. We compute the expected error in estimating the position in both the asymptotic limit, using Fisher information, and for low spike counts, using maximum likelihood estimation. Achieving high spatial resolution and covering a large range of space in a grid code leads to a trade-off: the best grid code for spatial resolution is built of nested modules with different spatial periods, one inside the other, whereas maximizing the spatial range requires distinct spatial periods that are pairwisely incommensurate. Optimizing the spatial resolution predicts two grid cell properties that have been experimentally observed. First, short lattice spacings should outnumber long lattice spacings. Second, the grid code should be self-similar across different lattice spacings, so that the grid field always covers a fixed fraction of the lattice period. If these conditions are satisfied and the spatial “tuning curves” for each neuron span the same range of firing rates, then the resolution of the grid code easily exceeds that of the best possible place code with the same number of neurons
Whole Genome Interpretation for a Family of Five.
Although best practices have emerged on how to analyse and interpret personal genomes, the utility of whole genome screening remains underdeveloped. A large amount of information can be gathered from various types of analyses via whole genome sequencing including pathogenicity screening, genetic risk scoring, fitness, nutrition, and pharmacogenomic analysis. We recognize different levels of confidence when assessing the validity of genetic markers and apply rigorous standards for evaluation of phenotype associations. We illustrate the application of this approach on a family of five. By applying analyses of whole genomes from different methodological perspectives, we are able to build a more comprehensive picture to assist decision making in preventative healthcare and well-being management. Our interpretation and reporting outputs provide input for a clinician to develop a healthcare plan for the individual, based on genetic and other healthcare data
Density of states of helium droplets
Accurate analytical expressions for the state densities of liquid He-4
droplets are derived, incorporating the ripplon and phonon degrees of freedom.
The microcanonical temperature and the ripplon angular momentum level density
are also evaluated. The approach is based on inversions and systematic
expansions of canonical thermodynamic properties.Comment: 20 pages, 5 figure
Renorm-group, Causality and Non-power Perturbation Expansion in QFT
The structure of the QFT expansion is studied in the framework of a new
"Invariant analytic" version of the perturbative QCD. Here, an invariant
(running) coupling is transformed
into a "--analytized" invariant coupling which, by constuction, is free of ghost singularities due to
incorporating some nonperturbative structures.
Meanwhile, the "analytized" perturbation expansion for an observable , in
contrast with the usual case, may contain specific functions , the "n-th power of analytized as a whole", instead
of . In other words, the pertubation series for , due to
analyticity imperative, may change its form turning into an {\it asymptotic
expansion \`a la Erd\'elyi over a nonpower set} .
We analyse sets of functions and discuss properties of
non-power expansion arising with their relations to feeble loop and scheme
dependence of observables.
The issue of ambiguity of the invariant analytization procedure and of
possible inconsistency of some of its versions with the RG structure is also
discussed.Comment: 12 pages, LaTeX To appear in Teor. Mat. Fizika 119 (1999) No.
A superfluid hydrodynamic model for the enhanced moments of inertia of molecules in liquid 4He
We present a superfluid hydrodynamic model for the increase in moment of
inertia, , of molecules rotating in liquid He. The static
inhomogeneous He density around each molecule (calculated using the Orsay-Paris
liquid He density functional) is assumed to adiabatically follow the
rotation of the molecule. We find that the values created by the
viscousless and irrotational flow are in good agreement with the observed
increases for several molecules [ OCS, (HCN), HCCCN, and HCCCH ]. For
HCN and HCCH, our model substantially overestimates . This is likely
to result from a (partial) breakdown of the adiabatic following approximation.Comment: 4 pages, 1 eps figure, corrected version of published paper. Erratum
has been submitted for change
Porous silicon formation and electropolishing
Electrochemical etching of silicon in hydrofluoride containing electrolytes
leads to pore formation for low and to electropolishing for high applied
current. The transition between pore formation and polishing is accompanied by
a change of the valence of the electrochemical dissolution reaction. The local
etching rate at the interface between the semiconductor and the electrolyte is
determined by the local current density. We model the transport of reactants
and reaction products and thus the current density in both, the semiconductor
and the electrolyte. Basic features of the chemical reaction at the interface
are summarized in law of mass action type boundary conditions for the transport
equations at the interface. We investigate the linear stability of a planar and
flat interface. Upon increasing the current density the stability flips either
through a change of the valence of the dissolution reaction or by a nonlinear
boundary conditions at the interface.Comment: 18 pages, 8 figure
Algebras of Measurements: the logical structure of Quantum Mechanics
In Quantum Physics, a measurement is represented by a projection on some
closed subspace of a Hilbert space. We study algebras of operators that
abstract from the algebra of projections on closed subspaces of a Hilbert
space. The properties of such operators are justified on epistemological
grounds. Commutation of measurements is a central topic of interest. Classical
logical systems may be viewed as measurement algebras in which all measurements
commute. Keywords: Quantum measurements, Measurement algebras, Quantum Logic.
PACS: 02.10.-v.Comment: Submitted, 30 page
Local Ranking Problem on the BrowseGraph
The "Local Ranking Problem" (LRP) is related to the computation of a
centrality-like rank on a local graph, where the scores of the nodes could
significantly differ from the ones computed on the global graph. Previous work
has studied LRP on the hyperlink graph but never on the BrowseGraph, namely a
graph where nodes are webpages and edges are browsing transitions. Recently,
this graph has received more and more attention in many different tasks such as
ranking, prediction and recommendation. However, a web-server has only the
browsing traffic performed on its pages (local BrowseGraph) and, as a
consequence, the local computation can lead to estimation errors, which hinders
the increasing number of applications in the state of the art. Also, although
the divergence between the local and global ranks has been measured, the
possibility of estimating such divergence using only local knowledge has been
mainly overlooked. These aspects are of great interest for online service
providers who want to: (i) gauge their ability to correctly assess the
importance of their resources only based on their local knowledge, and (ii)
take into account real user browsing fluxes that better capture the actual user
interest than the static hyperlink network. We study the LRP problem on a
BrowseGraph from a large news provider, considering as subgraphs the
aggregations of browsing traces of users coming from different domains. We show
that the distance between rankings can be accurately predicted based only on
structural information of the local graph, being able to achieve an average
rank correlation as high as 0.8
- …