80 research outputs found

    Clinical Pharmacology and Dosing Regimen Optimization of Neonatal Opioid Withdrawal Syndrome Treatments

    Get PDF
    In this paper, we review the management of neonatal opioid withdrawal syndrome (NOWS) and clinical pharmacology of primary treatment agents in NOWS, including morphine, methadone, buprenorphine, clonidine, and phenobarbital. Pharmacologic treatment strategies in NOWS have been mostly empirical, and heterogeneity in dosing regimens adds to the difficulty of extrapolating study results to broader patient populations. As population pharmacokinetics (PKs) of pharmacologic agents in NOWS become more well-defined and knowledge of patient-specific factors affecting treatment outcomes continue to accumulate, PK/pharmacodynamic modeling and simulation will be powerful tools to aid the design of optimal dosing regimens at the patient level. Although there is an increasing number of clinical trials on the comparative efficacy of treatment agents in NOWS, here, we also draw attention to the importance of optimizing the dosing regimen, which can be arguably equally important at identifying the optimal treatment agent

    Phenylethynyl-Substituted Benzenes and Heterocycles for the Treatment of Cancer

    Get PDF
    Halogenated phenylethynyl-substituted heterocycles that possess either an N-alkylamino or N,N-dialkylamino group attached to the heterocycle or halogenated phenylethynyl-substituted benzenes that a nitrogen-containing heterocycle attached to the benzene inhibit the proliferation cancer cells and are useful antineoplastic agents

    Phase 1b Trial of Proteasome Inhibitor Carfilzomib with Irinotecan in Lung Cancer and Other Irinotecan-Sensitive Malignancies That Have Progressed on Prior Therapy (Onyx IST Reference Number: CAR-IST-553)

    Get PDF
    Introduction Proteasome inhibition is an established therapy for many malignancies. Carfilzomib, a novel proteasome inhibitor, was combined with irinotecan to provide a synergistic approach in relapsed, irinotecan-sensitive cancers. Materials and Methods Patients with relapsed irinotecan-sensitive cancers received carfilzomib (Day 1, 2, 8, 9, 15, and 16) at three dose levels (20/27 mg/m2, 20/36 mg/m2 and 20/45 mg/m2/day) in combination with irinotecan (Days 1, 8 and 15) at 125 mg/m2/day. Key eligibility criteria included measurable disease, a Zubrod PS of 0 or 1, and acceptable organ function. Patients with stable asymptomatic brain metastases were eligible. Dose escalation utilized a standard 3 + 3 design. Results Overall, 16 patients were enrolled to three dose levels, with four patients replaced. Three patients experienced dose limiting toxicity (DLT) and the maximum tolerated dose (MTD) was exceeded in Cohort 3. The RP2 dose was carfilzomib 20/36 mg/m2 (given on Days 1, 2, 8, 9, 15, and 16) and irinotecan 125 mg/m2 (Days 1, 8 and 15). Common Grade (Gr) 3 and 4 toxicities included fatigue (19%), thrombocytopenia (19%), and diarrhea (13%). Conclusions Irinotecan and carfilzomib were well tolerated, with common toxicities of fatigue, thrombocytopenia and neutropenic fever. Objective clinical response was 19% (one confirmed partial response (PR) in small cell lung cancer (SCLC) and two unconfirmed); stable disease (SD) was 6% for a disease control rate (DCR) of 25%. The recommended phase II dose was carfilzomib 20/36 mg/m2 and irinotecan125 mg/m2. The phase II evaluation is ongoing in relapsed small cell lung cancer

    Nanoparticles Containing Anti-inflammatory Agents as Chemotherapy Adjuvants II: Role of Plasma Esterases in Drug Release

    Get PDF
    The pre-administration of the anti-inflammatory drugs dexamethasone (DEX) and cortisone acetate reduces toxicity and enhances efficacy of anticancer agents in murine models and in human clinical trials (1–5). We previously reported on the formulation of the lipophilic dexamethasone palmitate ester (DEX-P) in nanoparticles (NPs) employing a microemulsion template engineering technique to achieve tumor-specific delivery of dexamethasone (6). The nanoparticles exhibited significantly enhanced stealth properties as indicated by reduced macrophage uptake and decreased adsorption of opsonin proteins in in vitro assays (6). Unexpectedly, preliminary biodistribution studies of NPs containing [3H]-DEX-P in tumor-bearing mice showed that the radiolabel was cleared from the circulation rapidly and exhibited high liver uptake. Our previous in vitro release studies demonstrated that rapid release of the radiolabel from the NPs was observed when 10% mouse plasma was used as the medium, while nominal release was observed in phosphate-buffered saline (PBS) buffer (6). Esterolysis of NP-associated DEX-P was presumed to be the main cause for the rapid drug release in plasma, as most of the released radioactivity was in the form of DEX and not DEX-P. High degradation rates of ester prodrugs in rodent plasma has been attributed to increased esterase activity, while only minimal degradation in human plasma has been observed (7–9). Based on our observation of the release of [3H]-DEX from NPs in mouse plasma, we studied the release of DEX from nanoparticles in various plasma sources as a guide for the design of future in vivo experiments

    High Payload Dual Therapeutic-Imaging Nanocarriers for Triggered Tumor Delivery

    Get PDF
    The in vitro and in vivo characterization of an optimized formulation of nanoparticles (NPs) loaded with a high content of dexamethasone palmitate (DEX-P), a chemotherapeutic adjuvant that decreases interstitial fluid pressure in tumors, and 111In, a signaling agent, is described. These NPs are uniform in size and composition. Single photon emission computed tomography imaging demonstrates significant tumor uptake of 111In-labeled DEX-P NPs in tumor-bearing mice. As with many nanoparticle-based drug delivery systems, significant liver accumulation is observed. Assessment of liver histology and blood tests show no apparent hepatic or renal toxicity of the DEX-P NPs. Conversion of DEX-P to DEX occurs when DEX-P NPs are incubated with mouse plasma, human tumor homogenate and ascites from tumor bearing mice, but not with human plasma. This conversion is slower in plasma from Es1e(βˆ’/βˆ’)/SCID mice, a potential alternative animal model that better mimics humans; however, plasma from these mice are not completely devoid of esterase activity. The difference between blood and tumor esterase activity in humans facilitates the delivery of DEX-P NPs to tumors and the release of dexamethasone by an esterase trigger

    Localization and Functional Characterization of the Rat Oatp4c1 Transporter in an In Vitro Cell System and Rat Tissues

    Get PDF
    The organic anion transporting polypeptide 4c1 (Oatp4c1) was previously identified as a novel uptake transporter predominantly expressed at the basolateral membrane in the rat kidney proximal tubules. Its functional role was suggested to be a vectorial transport partner of an apically-expressed efflux transporter for the efficient translocation of physiological substrates into urine, some of which were suggested to be uremic toxins. However, our in vitro studies with MDCKII cells showed that upon transfection rat Oatp4c1 polarizes to the apical membrane. In this report, we validated the trafficking and function of Oatp4c1 in polarized cell systems as well as its subcellular localization in rat kidney. Using several complementary biochemical, molecular and proteomic methods as well as antibodies amenable to immunohistochemistry, immunofluorescence, and immunobloting we investigated the expression pattern of Oatp4c1 in polarized cell systems and in the rat kidney. Collectively, these data demonstrate that rat Oatp4c1 traffics to the apical cell surface of polarized epithelium and localizes primarily in the proximal straight tubules, the S3 fraction of the nephron. Drug uptake studies in Oatp4c1-overexpressing cells demonstrated that Oatp4c1-mediated estrone-3-sulfate (E3S) uptake was pH-dependent and ATP-independent. These data definitively demonstrate the subcellular localization and histological location of Oatp4c1 and provide additional functional evidence that reconciles expression-function reports found in the literature

    Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance <it>in vitro </it>occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7<sub>DOX-2</sub>), epirubicin (MCF-7<sub>EPI</sub>), paclitaxel (MCF-7<sub>TAX-2</sub>), or docetaxel (MCF-7<sub>TXT</sub>). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters.</p> <p>Results</p> <p>In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance.</p> <p>Conclusion</p> <p>This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of resistance cannot be attributed solely to changes in drug accumulation or the activity of drug transporters. The identities of these additional drug-transporter-independent mechanisms are discussed, including their likely clinical relevance.</p

    Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines

    Get PDF
    BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism

    Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes

    Get PDF
    Understanding the mechanisms of multidrug resistance (MDR) could improve clinical drug efficacy. Multidrug resistance is associated with ATP binding cassette (ABC) transporters, but the factors that regulate their expression at clinically relevant drug concentrations are poorly understood. We report that a single-step selection with low doses of anti-cancer agents, similar to concentrations reported in vivo, induces MDR that is mediated exclusively by ABCG2. We selected breast, ovarian and colon cancer cells (MCF-7, IGROV-1 and S-1) after exposure to 14 or 21 nM doxorubicin for only 10 days. We found that these cells overexpress ABCG2 at the mRNA and protein levels. RNA interference analysis confirmed that ABCG2 confers drug resistance. Furthermore, ABCG2 upregulation was facilitated by histone hyperacetylation due to weaker histone deacetylase 1-promoter association, indicating that these epigenetic changes elicit changes in ABCG2 gene expression. These studies indicate that the MDR phenotype arises following low-dose, single-step exposure to doxorubicin, and further suggest that ABCG2 may mediate early stages of MDR development. This is the first report to our knowledge of single-step, low-dose selection leading to overexpression of ABCG2 by epigenetic changes in multiple cancer cell lines
    • …
    corecore