79 research outputs found
Vacuum-Stimulated Raman Scattering based on Adiabatic Passage in a High-Finesse Optical Cavity
We report on the first observation of stimulated Raman scattering from a
Lambda-type three-level atom, where the stimulation is realized by the vacuum
field of a high-finesse optical cavity. The scheme produces one intracavity
photon by means of an adiabatic passage technique based on a counter-intuitive
interaction sequence between pump laser and cavity field. This photon leaves
the cavity through the less-reflecting mirror. The emission rate shows a
characteristic dependence on the cavity and pump detuning, and the observed
spectra have a sub-natural linewidth. The results are in excellent agreement
with numerical simulations.Comment: 4 pages, 5 figure
Entanglement signature in the mode structure of a single photon
It is shown that entanglement, which is a quantum correlation property of at
least two subsystems, is imprinted in the mode structure of a single photon.
The photon, which is emitted by two coupled cavities, carries the information
on the concurrence of the two intracavity fields. This can be useful for
recording the entanglement dynamics of two cavity fields and for entanglement
transfer.Comment: 4 pages, 3 figure
Entanglement and purity of single- and two-photon states
Whereas single- and two-photon wave packets are usually treated as pure
states, in practice they will be mixed. We study how entanglement created with
mixed photon wave packets is degraded. We find in particular that the
entanglement of a delocalized single-photon state of the electro-magnetic field
is determined simply by its purity. We also discuss entanglement for two-photon
mixed states, as well as the influence of a vacuum component.Comment: 11 pages, 10 figures, 1 debuting autho
Detecting drift of quantum sources: not the de Finetti theorem
We propose and analyze a method to detect and characterize the drift of a
nonstationary quantum source. It generalizes a standard measurement for
detecting phase diffusion of laser fields to quantum systems of arbitrary
Hilbert space dimension, qubits in particular. We distinguish diffusive and
systematic drifts, and examine how quickly one can determine that a source is
drifting. We show that for single-photon wavepackets our measurement is
implemented by the Hong-Ou-Mandel effect.Comment: 5 pages, 2 figure
Demonstration of a Transportable 1 Hz-Linewidth Laser
We present the setup and test of a transportable clock laser at 698 nm for a
strontium lattice clock. A master-slave diode laser system is stabilized to a
rigidly mounted optical reference cavity. The setup was transported by truck
over 400 km from Braunschweig to D\"usseldorf, where the cavity-stabilized
laser was compared to a stationary clock laser for the interrogation of
ytterbium (578 nm). Only minor realignments were necessary after the transport.
The lasers were compared by a Ti:Sapphire frequency comb used as a transfer
oscillator. The thus generated virtual beat showed a combined linewidth below 1
Hz (at 1156 nm). The transport back to Braunschweig did not degrade the laser
performance, as was shown by interrogating the strontium clock transition.Comment: 3 pages, 4 figure
Time-Resolved Two-Photon Quantum Interference
The interference of two independent single-photon pulses impinging on a beam
splitter is analysed in a generalised time-resolved manner. Different aspects
of the phenomenon are elaborated using different representations of the
single-photon wave packets, like the decomposition into single-frequency field
modes or spatio-temporal modes matching the photonic wave packets. Both
representations lead to equivalent results, and a photon-by-photon analysis
reveals that the quantum-mechanical two-photon interference can be interpreted
as a classical one-photon interference once a first photon is detected. A novel
time-dependent quantum-beat effect is predicted if the interfering photons have
different frequencies. The calculation also reveals that full two-photon fringe
visibility can be achieved under almost any circumstances by applying a
temporal filter to the signal.Comment: 6 pages, 4 figure
Time-resolved detection and mode-mismatch in a linear optics quantum gate
Linear optics is a promising candidate for the implementation of quantum
information processing protocols. In such systems single photons are employed
to represent qubits. In practice, single photons produced from different
sources will not be perfectly temporally and frequency matched. Therefore
understanding the effects of temporal and frequency mismatch is important for
characterising the dynamics of the system. In this paper we discuss the effects
of temporal and frequency mismatch, how they differ, and what their effect is
upon a simple linear optics quantum gate. We show that temporal and frequency
mismatch exhibit inherently different effects on the operation of the gate. We
also consider the spectral effects of the photo-detectors, focusing on
time-resolved detection, which we show has a strong impact on the operation of
such protocols
Quantum Interference of Tunably Indistinguishable Photons from Remote Organic Molecules
We demonstrate two-photon interference using two remote single molecules as
bright solid-state sources of indistinguishable photons. By varying the
transition frequency and spectral width of one molecule, we tune and explore
the effect of photon distinguishability. We discuss future improvements on the
brightness of single-photon beams, their integration by large numbers on chips,
and the extension of our experimental scheme to coupling and entanglement of
distant molecules
Shaping the Phase of a Single Photon
While the phase of a coherent light field can be precisely known, the phase
of the individual photons that create this field, considered individually,
cannot. Phase changes within single-photon wave packets, however, have
observable effects. In fact, actively controlling the phase of individual
photons has been identified as a powerful resource for quantum communication
protocols. Here we demonstrate the arbitrary phase control of a single photon.
The phase modulation is applied without affecting the photon's amplitude
profile and is verified via a two-photon quantum interference measurement,
which can result in the fermionic spatial behaviour of photon pairs. Combined
with previously demonstrated control of a single photon's amplitude, frequency,
and polarisation, the fully deterministic phase shaping presented here allows
for the complete control of single-photon wave packets.Comment: 4 pages, 4 figure
- …