1,177 research outputs found

    Teaching Case: New Product Development And Pre-Launch Plans For Tickets Sales, Inc.

    Get PDF
    Ticket Sales, Inc (TSI) [1] is a startup business that has received seed funding. TSI is using the seed funding to perform a number of feasibility studies that will enable it to seek first-round venture capital. TSI has already performed a technology feasibility study and a marketing feasibility study, including a 5-year total cost of ownership pro forma budget. Outside consultants were retained to perform the studies. The case presents the Marketing Analysis and Feasibility Study performed by Big Apple Marketing. The TSI management team desires a second opinion concerning the work of Big Apple Marketing[1] and this case asks that NYC Associates[1] prepare an assessment of the Marketing Analysis and Feasibility Study in light of documented best practices in new product development

    Appariement automatique de modèles 3D à des images omnidirectionnelles pour des applications en réalité augmentée urbaine

    Get PDF
    L'un des plus grands défis de la réalité augmentée consiste à aligner parfaitement les informations réelles et virtuelles pour donner l'illusion que ces informations virtuelles font partie intégrante du monde réel. Pour ce faire, il faut estimer avec précision la position et l'orientation de l'utilisateur, et ce, en temps réel. L'augmentation de scènes extérieures est particulièrement problématique, car il n'existe pas de technologie suffisamment précise pour permettre d'assurer un suivi de la position de l'utilisateur au niveau de qualité requis pour des applications en ingénierie. Pour éviter ce problème, nous nous sommes attardés à l'augmentation de panoramas omnidirectionnels pris à une position fixe. L'objectif de ce projet est de proposer une méthode robuste et automatique d'initialisation permettant de calculer la pose de panoramas omnidirectionnels urbains pour ainsi obtenir un alignement parfait des panoramas et des informations virtuelles.One of the greatest challenges of augmented reality is to perfectly synchronize real and virtual information to give the illusion that virtual information are an integral part of real world. To do so, we have to precisely estimate the user position and orientation and, even more dificult, it has to be done in real time. Augmentation of outdoor scenes is particularly problematic because there are no technologies accurate enough to get user position with the level of accuracy required for application in engineering. To avoid this problem, we focused on augmenting panoramic images taken at a fixed position. The goal of this project is to propose a robust and automatic initialization method to calculate the pose of urban omnidirectional panoramas to get a perfect alignment between panoramas and virtual information

    Breakup of diminutive Rayleigh jets

    Get PDF
    Discharging a liquid from a nozzle at sufficient large velocity leads to a continuous jet that due to capillary forces breaks up into droplets. Here we investigate the formation of microdroplets from the breakup of micron-sized jets with ultra high-speed imaging. The diminutive size of the jet implies a fast breakup time scale τc=ρr3/γ\tau_\mathrm{c} = \sqrt{\rho r^3 / \gamma} of the order of 100\,ns{}, and requires imaging at 14 million frames per second. We directly compare these experiments with a numerical lubrication approximation model that incorporates inertia, surface tension, and viscosity [Eggers and Dupont, J. Fluid Mech. 262, 205 (1994); Shi, Brenner, and Nagel, Science 265, 219 (1994)]. The lubrication model allows to efficiently explore the parameter space to investigate the effect of jet velocity and liquid viscosity on the formation of satellite droplets. In the phase diagram we identify regions where the formation of satellite droplets is suppressed. We compare the shape of the droplet at pinch-off between the lubrication approximation model and a boundary integral (BI) calculation, showing deviations at the final moment of the pinch-off. Inspite of this discrepancy, the results on pinch-off times and droplet and satellite droplet velocity obtained from the lubrication approximation agree with the high-speed imaging results

    One single static measurement predicts wave localization in complex structures

    Full text link
    A recent theoretical breakthrough has brought a new tool, called \emph{localization landscape}, to predict the localization regions of vibration modes in complex or disordered systems. Here, we report on the first experiment which measures the localization landscape and demonstrates its predictive power. Holographic measurement of the static deformation under uniform load of a thin plate with complex geometry provides direct access to the landscape function. When put in vibration, this system shows modes precisely confined within the sub-regions delineated by the landscape function. Also the maxima of this function match the measured eigenfrequencies, while the minima of the valley network gives the frequencies at which modes become extended. This approach fully characterizes the low frequency spectrum of a complex structure from a single static measurement. It paves the way to the control and engineering of eigenmodes in any vibratory system, especially where a structural or microscopic description is not accessible.Comment: 5 pages, 4 figure

    Wnt Signals Organize Synaptic Prepattern and Axon Guidance through the Zebrafish unplugged/MuSK Receptor

    Get PDF
    SummaryEarly during neuromuscular development, acetylcholine receptors (AChRs) accumulate at the center of muscle fibers, precisely where motor growth cones navigate and synapses eventually form. Here, we show that Wnt11r binds to the zebrafish unplugged/MuSK ectodomain to organize this central muscle zone. In the absence of such a zone, prepatterned AChRs fail to aggregate and, as visualized by live-cell imaging, growth cones stray from their central path. Using inducible unplugged/MuSK transgenes, we show that organization of the central muscle zone is dispensable for the formation of neural synapses, but essential for AChR prepattern and motor growth cone guidance. Finally, we show that blocking noncanonical dishevelled signaling in muscle fibers disrupts AChR prepatterning and growth cone guidance. We propose that Wnt ligands activate unplugged/MuSK signaling in muscle fibers to restrict growth cone guidance and AChR prepatterns to the muscle center through a mechanism reminiscent of the planar cell polarity pathway

    MATSim-T : Architecture and Simulation Times

    Get PDF
    Micro-simulations for transport planning are becoming increasingly important in traffic simulation, traffic analysis, and traffic forecasting. In the last decades the shift from using typically aggregated data to more detailed, individual based, complex data (e.g. GPS tracking) andthe continuously growing computer performance on fixed price level leads to the possibility of using microscopic models for large scale planning regions. This chapter presents such a micro-simulation. The work is part of the research project MATSim (Multi Agent Transport Simulation, http://matsim.org). In the chapter here the focus lies on design and implementation issues as well as on computational performance of different parts of the system. Based on a study of Swiss daily traffic – ca. 2.3 million individuals using motorized individual transport producing about 7.1 million trips, assigned to a Swiss network model with about 60,000 links, simulated and optimized completely time-dynamic for a complete workday – it is shown that the system is able to generate those traffic patterns in about 36 hours computation time
    corecore