13 research outputs found

    Characterizing the Antimicrobial and Anticancer Activities and Several Associated Bioactive Compounds of Argemone mexicana

    Get PDF
    Commonly called the Mexican prickly poppy, Argemone mexicana is a stress-resistant member of the Papaveraceae family of plants that has been used in traditional medicine for centuries by indigenous communities in Mexico and Western parts of the United States. This plant has been used to treat a wide variety of ailments, including skin diseases and intestinal infections, with reported antimicrobial and anticancer properties. However, these properties are poorly understood, with few associated bioactive compounds yet identified. Herein, we describe the germination conditions of A. mexicana and preliminarily characterize the antimicrobial and anticancer activities of different parts of the plant. We show that when comparing 1 mg of each sample normalized to background solvent alone, the A. mexicana methanol outer root and leaf extracts possess the strongest antimicrobial activity, with greatest effects against the gram-positive bacteria tested, and less activity against the gram-negative bacteria and fungi tested. Additionally, we report that when using the MTT colorimetric assay, the outer root and leaf methanol extracts and the seed hexane extract have pronounced inhibitory effects against T84 human colon cancer cells. Using normal-phase column chromatography and subsequent mass spectrometry analysis of the outer root and leaf methanol fractions, we have begun to chemically characterize several candidate antibacterial compounds. These preliminary results warrant further research into defining the bioactive chemicals produced in the roots, leaves and seeds of A. mexicana and are especially significant given the growing global concern of antibiotic-resistant ‘superbugs’ and lack of new antimicrobial and anticancer drug discovery

    Characterizing the Antimicrobial and Anticancer Activities and Several Associated Bioactive Compounds of Argemone mexicana

    Get PDF
    Commonly called the Mexican prickly poppy, Argemone mexicana is a stress-resistant member of the Papaveraceae family of plants that has been used in traditional medicine for centuries by indigenous communities in Mexico and Western parts of the United States. This plant has been used to treat a wide variety of ailments, including skin diseases and intestinal infections, with reported antimicrobial and anticancer properties. However, these properties are poorly understood, with few associated bioactive compounds yet identified. Herein, we describe the germination conditions of A. mexicana and preliminarily characterize the antimicrobial and anticancer activities of different parts of the plant. We show that when comparing 1 mg of each sample normalized to background solvent alone, the A. mexicana methanol outer root and leaf extracts possess the strongest antimicrobial activity, with greatest effects against the gram-positive bacteria tested, and less activity against the gram-negative bacteria and fungi tested. Additionally, we report that when using the MTT colorimetric assay, the outer root and leaf methanol extracts and the seed hexane extract have pronounced inhibitory effects against T84 human colon cancer cells. Using normal-phase column chromatography and subsequent mass spectrometry analysis of the outer root and leaf methanol fractions, we have begun to chemically characterize several candidate antibacterial compounds. These preliminary results warrant further research into defining the bioactive chemicals produced in the roots, leaves and seeds of A. mexicana and are especially significant given the growing global concern of antibiotic-resistant ‘superbugs’ and lack of new antimicrobial and anticancer drug discovery

    Prenatal muscle development in a mouse model for the secondary dystroglycanopathies

    Get PDF
    The defective glycosylation of α-dystroglycan is associated with a group of muscular dystrophies that are collectively referred to as the secondary dystroglycanopathies. Mutations in the gene encoding fukutin-related protein (FKRP) are one of the most common causes of secondary dystroglycanopathy in the UK and are associated with a wide spectrum of disease. Whilst central nervous system involvement has a prenatal onset, no studies have addressed prenatal muscle development in any of the mouse models for this group of diseases. In view of the pivotal role of α-dystroglycan in early basement membrane formation, we sought to determine if the muscle formation was altered in a mouse model of FKRP-related dystrophy

    From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases

    Get PDF
    Polyisoprenoid alcohols are membrane lipids that are present in every cell, conserved from archaea to higher eukaryotes. The most common form, alpha-saturated polyprenol or dolichol is present in all tissues and most organelle membranes of eukaryotic cells. Dolichol has a well defined role as a lipid carrier for the glycan precursor in the early stages of N-linked protein glycosylation, which is assembled in the endoplasmic reticulum of all eukaryotic cells. Other glycosylation processes including C- and O-mannosylation, GPI-anchor biosynthesis and O-glucosylation also depend on dolichol biosynthesis via the availability of dolichol-P-mannose and dolichol-P-glucose in the ER. The ubiquity of dolichol in cellular compartments that are not involved in glycosylation raises the possibility of additional functions independent of these protein post-translational modifications. The molecular basis of several steps involved in the synthesis and the recycling of dolichol and its derivatives is still unknown, which hampers further research into this direction. In this review, we summarize the current knowledge on structural and functional aspects of dolichol metabolites. We will describe the metabolic disorders with a defect in known steps of dolichol biosynthesis and recycling in human and discuss their pathogenic mechanisms. Exploration of the developmental, cellular and biochemical defects associated with these disorders will provide a better understanding of the functions of this lipid class in human

    Characterizing the Antimicrobial and Anticancer Activities and Several Associated Bioactive Compounds of Argemone mexicana

    No full text
    Commonly called the Mexican prickly poppy, Argemone mexicana is a stress-resistant member of the Papaveraceae family of plants that has been used in traditional medicine for centuries by indigenous communities in Mexico and Western parts of the USA. This plant has been used to treat a wide variety of ailments, including skin diseases and intestinal infections, with reported antimicrobial and anticancer properties. However, these properties are poorly understood, with no associated bioactive compounds yet identified. Herein, we describe the germination conditions of A. mexicana and preliminarily characterize the antimicrobial and anticancer activities of different parts (seeds, leaves, inner vs. outer roots) of the plant. We show that when comparing 1 mg of each sample normalized to background solvent alone, the A. mexicana methanol outer root and leaf extracts possess the strongest antimicrobial activity, with greatest effects against gram-positive bacteria tested, and less activity against gram-negative bacteria and fungi tested. Additionally, we report that when using the MTT colorimetric assay, the outer root and leaf methanol extracts and the seed hexane extract have pronounced inhibitory effects against T84 human colon cancer cells. Using normal-phase column chromatography and subsequent mass spectrometry analysis of the outer root and leaf methanol fractions, we have begun to chemically characterize several candidate antibacterial compounds. These preliminary results warrant further research into defining the bioactive chemicals produced in the roots, leaves and seeds of A. mexicana and are especially significant given the growing global concern of antibiotic-resistant ‘superbugs’ and lack of new antimicrobial and anticancer drug discovery

    Characterizing the Antimicrobial and Anticancer Activities and Several Associated Bioactive Compounds of Argemone mexicana

    No full text
    Commonly called the Mexican prickly poppy, Argemone mexicana is a stress-resistant member of the Papaveraceae family of plants that has been used in traditional medicine for centuries by indigenous communities in Mexico and Western parts of the USA. This plant has been used to treat a wide variety of ailments, including skin diseases and intestinal infections, with reported antimicrobial and anticancer properties. However, these properties are poorly understood, with no associated bioactive compounds yet identified. Herein, we describe the germination conditions of A. mexicana and preliminarily characterize the antimicrobial and anticancer activities of different parts (seeds, leaves, inner vs. outer roots) of the plant. We show that when comparing 1 mg of each sample normalized to background solvent alone, the A. mexicana methanol outer root and leaf extracts possess the strongest antimicrobial activity, with greatest effects against gram-positive bacteria tested, and less activity against gram-negative bacteria and fungi tested. Additionally, we report that when using the MTT colorimetric assay, the outer root and leaf methanol extracts and the seed hexane extract have pronounced inhibitory effects against T84 human colon cancer cells. Using normal-phase column chromatography and subsequent mass spectrometry analysis of the outer root and leaf methanol fractions, we have begun to chemically characterize several candidate antibacterial compounds. These preliminary results warrant further research into defining the bioactive chemicals produced in the roots, leaves and seeds of A. mexicana and are especially significant given the growing global concern of antibiotic-resistant ‘superbugs’ and lack of new antimicrobial and anticancer drug discovery

    Characterizing the Antimicrobial and Anticancer Activities and Several Associated Bioactive Compounds of Argemone mexicana

    No full text
    Commonly called the Mexican prickly poppy, Argemone mexicana is a stress-resistant member of the Papaveraceae family of plants that has been used in traditional medicine for centuries by indigenous communities in Mexico and Western parts of the USA. This plant has been used to treat a wide variety of ailments, including skin diseases and intestinal infections, with reported antimicrobial and anticancer properties. However, these properties are poorly understood, with no associated bioactive compounds yet identified. Herein, we describe the germination conditions of A. mexicana and preliminarily characterize the antimicrobial and anticancer activities of different parts (seeds, leaves, inner vs. outer roots) of the plant. We show that when comparing 1 mg of each sample normalized to background solvent alone, the A. mexicana methanol outer root and leaf extracts possess the strongest antimicrobial activity, with greatest effects against gram-positive bacteria tested, and less activity against gram-negative bacteria and fungi tested. Additionally, we report that when using the MTT colorimetric assay, the outer root and leaf methanol extracts and the seed hexane extract have pronounced inhibitory effects against T84 human colon cancer cells. Using normal-phase column chromatography and subsequent mass spectrometry analysis of the outer root and leaf methanol fractions, we have begun to chemically characterize several candidate antibacterial compounds. These preliminary results warrant further research into defining the bioactive chemicals produced in the roots, leaves and seeds of A. mexicana and are especially significant given the growing global concern of antibiotic-resistant ‘superbugs’ and lack of new antimicrobial and anticancer drug discovery

    Characterizing the Antimicrobial and Anticancer Activities and Several Associated Bioactive Compounds of Argemone mexicana

    No full text
    Commonly called the Mexican prickly poppy, Argemone mexicana is a stress-resistant member of the Papaveraceae family of plants that has been used in traditional medicine for centuries by indigenous communities in Mexico and Western parts of the USA. This plant has been used to treat a wide variety of ailments, including skin diseases and intestinal infections, with reported antimicrobial and anticancer properties. However, these properties are poorly understood, with few associated bioactive compounds yet identified. Herein, we describe the germination conditions of A. mexicana and preliminarily characterize the antimicrobial and anticancer activities of different parts (seeds, leaves, inner vs. outer roots) of the plant. We show that when comparing 1 mg of each sample normalized to background solvent alone, the A. mexicana methanol outer root and leaf extracts possess the strongest antimicrobial activity, with greatest effects against the gram-positive bacteria tested, and less activity against the gram-negative bacteria and fungi tested. Additionally, we report that when using the MTT colorimetric assay, the outer root, leaf methanol, and the seed hexane extracts have pronounced inhibitory effects against T84 human colon cancer cells. Using normal-phase column chromatography and subsequent mass spectrometry analysis of the outer root and leaf methanol fractions, we have begun to chemically characterize several candidate antibacterial compounds. These preliminary results warrant further research into defining the bioactive chemicals produced in the roots, leaves and seeds of A. mexicana and are especially significant given the growing global concern of antibiotic-resistant ‘superbugs’ and lack of new antimicrobial and anticancer drug discovery

    Characterizing the Antimicrobial and Anticancer Activities and Several Associated Bioactive Compounds of Argemone mexicana

    No full text
    Commonly called the Mexican prickly poppy, Argemone mexicana is a stress-resistant member of the Papaveraceae family of plants that has been used in traditional medicine for centuries by indigenous communities in Mexico and Western parts of the USA. This plant has been used to treat a wide variety of ailments, including skin diseases and intestinal infections, with reported antimicrobial and anticancer properties. However, these properties are poorly understood, with few associated bioactive compounds yet identified. Herein, we describe the germination conditions of A. mexicana and preliminarily characterize the antimicrobial and anticancer activities of different parts (seeds, leaves, inner vs. outer roots) of the plant. We show that when comparing 1 mg of each sample normalized to background solvent alone, the A. mexicana methanol outer root and leaf extracts possess the strongest antimicrobial activity, with greatest effects against the gram-positive bacteria tested, and less activity against the gram-negative bacteria and fungi tested. Additionally, we report that when using the MTT colorimetric assay, the outer root, leaf methanol, and the seed hexane extracts have pronounced inhibitory effects against T84 human colon cancer cells. Using normal-phase column chromatography and subsequent mass spectrometry analysis of the outer root and leaf methanol fractions, we have begun to chemically characterize several candidate antibacterial compounds. These preliminary results warrant further research into defining the bioactive chemicals produced in the roots, leaves and seeds of A. mexicana and are especially significant given the growing global concern of antibiotic-resistant ‘superbugs’ and lack of new antimicrobial and anticancer drug discovery

    Characterizing the Cytotoxic Effects and Several Antimicrobial Phytocompounds of Argemone mexicana

    No full text
    Commonly called the Mexican prickly poppy, Argemone mexicana is a stress-resistant member of the Papaveraceae family of plants that has been used in traditional medicine for centuries to treat a wide variety of ailments. This plant has reported antimicrobial and antioxidant properties, and cytotoxic effects against some human cancer cell lines. Due to its various therapeutic uses and its abundance of secondary metabolites, A. mexicana has great potential as a drug discovery candidate. Herein, the cytotoxic activities of different A. mexicana plant parts (seeds, leaves, inner vs. outer roots) from methanol or hexane extracts are characterized against cells of seven organisms. Comparing 1 mg of each sample normalized to background solvent alone, A. mexicana methanol outer root and leaf extracts possessed the strongest antimicrobial activity, with greatest effects against the Gram-positive bacteria tested, and less activity against the Gram-negative bacteria and fungi tested. Using the MTT colorimetric assay, the outer root methanol and seed hexane extracts displayed pronounced inhibitory effects against human colon cancer cells. Quantification of c-MYC and APC mRNA levels help elucidate how the A. mexicana root methanol extract possibly affects colon cancer cells. After ultra-performance liquid chromatography coupled with mass spectrometry and nuclear magnetic resonance analysis of the root and leaf methanol fractions, two main antibacterial compounds, chelerythrine and berberine, were identified. The roots possessed both phytocompounds, while the leaf lacked chelerythrine. These data highlight the importance of plants as an invaluable pharmaceutical resource at a time when antimicrobial and anticancer drug discovery has plateaued
    corecore