246,150 research outputs found

    Uranium isotopes quantitatively determined by modified method of atomic absorption spectrophotometry

    Get PDF
    Hollow-cathode discharge tubes determine the quantities of uranium isotopes in a sample by using atomic absorption spectrophotometry. Dissociation of the uranium atoms allows a large number of ground state atoms to be produced, absorbing the incident radiation that is different for the two major isotopes

    A Theory of Gamma-Ray Bursts

    Get PDF
    We present a specific scenario for the link between GRB and hypernovae, based on Blandford-Znajek extraction of black-hole spin energy. Such a mechanism requires a high angular momentum in the progenitor object. The observed association of gamma-ray bursts with type Ibc supernovae leads us to consider massive helium stars that form black holes at the end of their lives as progenitors. We combine the numerical work of MacFadyen & Woosley with analytic calculations, to show that about 1E53 erg each are available to drive the fast GRB ejecta and the supernova. The GRB ejecta are driven by the power output through the open field lines, whereas the supernova is powered by closed filed lines and jet shocks. We also present a much simplified approximate derivation of these energetics. Helium stars that leave massive black-hole remnants in special ways, namely via soft X-ray transients or very massive WNL stars. Since binaries naturally have high angular momentum, we propose a link between black-hole transients and gamma-ray bursts. Recent observations of one such transient, GRO J1655-40/Nova Scorpii 1994, explicitly support this connection: its high space velocity indicates that substantial mass was ejected in the formation of the black hole, and the overabundance of alpha-nuclei, especially sulphur, indicates that the explosion energy was extreme, as in SN 1998bw/GRB 980425. (abstract shortened)Comment: 32 pages, 8 figures, accepted for publication in New Astronom

    Motion of a sphere in the presence of a plane interface. Part 2. An exact solution in bipolar co-ordinates

    Get PDF
    A general solution for Stokes’ equation in bipolar co-ordinates is derived, and then applied to the arbitrary motion of a sphere in the presence of a plane fluid/fluid interface. The drag force and hydrodynamic torque on the sphere are then calculated for four specific motions of the sphere; namely, translation perpendicular and parallel to the interface and rotation about an axis which is perpendicular and parallel, respectively, to the interface. The most significant result of the present work is the comparison between these numerically exact solutions and the approximate solutions from part 1. The latter can be generalized to a variety of particle shapes, and it is thus important to assess their accuracy for this case of spherical particles where an exact solution can be obtained. In addition to comparisons with the approximate solutions, we also examine the predicted changes in the velocity, pressure and vorticity fields due to the presence of the plane interface. One particularly interesting feature of the solutions is the fact that the direction of rotation of a freely suspended sphere moving parallel to the interface can either be the same as for a sphere rolling along the interface (as might be intuitively expected), or opposite depending upon the location of the sphere centre and the ratio of viscosities for the two fluids

    The Formation of High-Mass Black Holes in Low Mass X-ray Binaries

    Full text link
    In this note we suggest that high-mass black holes; i.e., black holes of several solar masses, can be formed in binaries with low-mass main-sequence companions, provided that the hydrogen envelope of the massive star is removed in common envelope evolution which begins only after the massive star has finished He core burning. That is, the massive star is in the supergiant stage, which lasts only 104\sim 10^4 years, so effects of mass loss by He winds are small. Since the removal of the hydrogen envelope of the massive star occurs so late, it evolves essentially as a single star, rather than one in a binary. Thus, we can use evolutionary calculations of Woosley & Weaver (1995) of single stars. We find that the black holes in transient sources can be formed from stars with ZAMS masses in the interval 20-35\msun. The black hole mass is only slightly smaller than the He core mass, typically \sim 7\msun.Comment: 19 pages, substantial changes, accepted in New Astronom

    Large-N Yang-Mills Theory as Classical Mechanics

    Get PDF
    To formulate two-dimensional Yang-Mills theory with adjoint matter fields in the large-N limit as classical mechanics, we derive a Poisson algebra for the color-invariant observables involving adjoint matter fields. We showed rigorously in J. Math. Phys. 40, 1870 (1999) that different quantum orderings of the observables produce essentially the same Poisson algebra. Here we explain, in a less precise but more pedagogical manner, the crucial topological graphical observations underlying the formal proof.Comment: 8 pages, 3 eps figues, LaTeX2.09, aipproc macros needed; conference proceeding of MRST '99 (10-12 May, 1999, Carleton University, Canada

    Time-Dependent Variational Approach to the Non-Abelian Pure Gauge Theory

    Full text link
    The time-dependent variational approach to the pure Yang-Mills gauge theory, especially a color su(3) gauge theory, is formulated in the functional Schroedinger picture with a Gaussian wave functional approximation. The equations of motion for the quantum gauge fields are formulated in the Liouville-von Neumann form. This variational approach is applied in order to derive the transport coefficients, such as the shear viscosity, for the pure gluonic matter by using the linear response theory. As a result, the contribution to the shear viscosity from the quantum gluons is zero up to the lowest order of the coupling g in the quantum gluonic matter.Comment: 19 pages, no figures, using PTPTeX.cl
    corecore