9 research outputs found

    Energy transfer from baryons to dark matter as a unified solution to small-scale structure issues of the Λ\LambdaCDM model

    Get PDF
    Using a semianalytic code, we show how baryon physics in a Λ\LambdaCDM cosmology could solve the discrepancy between numerical predictions of dark matter haloes and observations, ranging from dwarf galaxies to clusters, without the need of nonstandard dark matter models as advocated, for example, by [Kaplinghat et al., Phys. Rev. Lett. 116, 041302, (2016)]. Combining well established results, we show, for the first time, how accounting for baryon physics, in particular dynamical friction mechanisms, leads to flat galaxy-cluster profiles and correlations in several of their properties, solves the so-called `diversity problem' and reproduces very well the challenging, extremely low-rising rotation curve of IC2574. We therefore suggest treating baryonic physics properly before introducing new exotic features, albeit legitimate, in the standard cosmological model.Comment: 10 pages, 4 figures, matching the accepted version on Phys. Rev.

    On the Dwarf Galaxy Rotation Curve Diversity Problem

    No full text
    In this paper, we show how baryonic physics can solve the problem of the striking diversity in dwarf galaxy rotation curves shapes. To this aim, we compare the distribution of galaxies of the SPARC sample, in the plane V2kpc-VRlast (V2kpc being the galaxy rotation velocity at 2 kpc, and VRlast being the outermost one), with that of galaxies that we simulated, taking account of baryonic effects. The scatter in the rotation curves in the V2kpc-VRlast plane, as well as the trend of the SPARC sample, and our simulated galaxy distribution is in good agreement. The solution of the “diversity” problem lies in the ability of the baryonic process to produce non-self-similar haloes, contrary to DM-only simulations. We show also that baryonic effects can reproduce the rotation curves of galaxies such as IC2574, which are characterized by a slow rise in radius. A solution to the diversity problem can be obtained taking the baryon physics effects appropriately into account
    corecore