4,292 research outputs found
Gauged Fermionic Q-balls
We present a new model for a non-topological soliton (NTS) that contains
interacting fermions, scalar particles and a gauge field. Using a variational
approach, we estimate the energy of the localized configuration, showing that
it can be the lowest energy state of the system for a wide range of parameters.Comment: 5 pages, 2 figures; revised version to appear in Phys. Rev.
The AdS/CFT/Unparticle Correspondence
We examine the correspondence between the anti-de Sitter (AdS) description of
conformal field theories (CFTs) and the unparticle description of CFTs. We show
how unparticle actions are equivalent to holographic boundary actions for
fields in AdS, and how massive unparticles provide a new type of infrared
cutoff that can be simply implemented in AdS by a soft breaking of conformal
symmetry. We also show that processes involving scalar unparticles with
dimensions d_s<2 or fermion unparticles with dimensions d_f<5/2 are insensitive
to ultraviolet cutoff effects. Finally we show that gauge interactions for
unparticles can be described by bulk gauge interactions in AdS and that they
correspond to minimal gauging of the non-local effective action, and we compute
the fermion unparticle production cross-section.Comment: 26 pages, 1 figur
The Frequency Dependent Conductivity of Electron Glasses
Results of DC and frequency dependent conductivity in the quantum limit, i.e.
hw > kT, for a broad range of dopant concentrations in nominally uncompensated,
crystalline phosphorous doped silicon and amorphous niobium-silicon alloys are
reported. These materials fall under the general category of disordered
insulating systems, which are referred to as electron glasses. Using microwave
resonant cavities and quasi-optical millimeter wave spectroscopy we are able to
study the frequency dependent response on the insulating side of the
metal-insulator transition. We identify a quantum critical regime, a Fermi
glass regime and a Coulomb glass regime. Our phenomenological results lead to a
phase diagram description, or taxonomy, of the electrodynamic response of
electron glass systems
Effects of thermal nonequilibrium and non-uniform temperature gradients on the onset of convection in a heterogeneous porous medium
The simultaneous effect of local thermal nonequilibrium (LTNE), vertical heterogeneity of permeability, and non-uniform basic temperature gradient on the criterion for the onset of Darcy-Benard convection is studied. The eigenvalue problem is solved numerically using the Galerkin method. The interaction of various types of permeability heterogeneity and non-uniform basic temperature gradient functions on the stability characteristics of the system is analyzed. It is observed that the linear variation (about the mean) of the permeability and the basic temperature gradient with depth has no added effect on the criterion for the onset of convection. However, the concurrent variation in heterogeneous permeability and non-uniform basic temperature gradient functions has more stabilizing effect on the system, while opposite is the trend when the effect of non-uniform basic temperature gradient alone is present. (C) 2011 Elsevier Ltd. All rights reserved
Coulomb gap in one-dimensional disordered electronic systems
We study a one-dimensional system of spinless electrons in the presence of a
long-range Coulomb interaction (LRCI) and a random chemical potential at each
site. We first present a Tomonaga-Luttinger liquid (TLL) description of the
system. We use the bosonization technique followed by the replica trick to
average over the quenched randomness. An expression for the localization length
of the system is then obtained using the renormalization group method and also
a physical argument. We then find the density of states for different values of
the energy; we get different expressions depending on whether the energy is
larger than or smaller than the inverse of the localization length. We work in
the limit of weak disorder where the localization length is very large; at that
length scale, the LRCI has the effect of reducing the interaction parameter K
of the TLL to a value much smaller than the noninteracting value of unity.Comment: Revtex, 6 pages, no figures; discussions have been expanded in
several place
Coulomb gap in one-dimensional disordered electron systems
The density of states of one-dimensional disordered electron systems with
long range Coulomb interaction is studied in the weak pinning limit. The
density of states is found to follow a power law with an exponent determined by
localization length, and this power law behavior is consistent with the
existing numerical results.Comment: RevTeX4 file, 5 pages, no figures To appear in Physical Reviews
Harmonic forcing of an extended oscillatory system: Homogeneous and periodic solutions
In this paper we study the effect of external harmonic forcing on a
one-dimensional oscillatory system described by the complex Ginzburg-Landau
equation (CGLE). For a sufficiently large forcing amplitude, a homogeneous
state with no spatial structure is observed. The state becomes unstable to a
spatially periodic ``stripe'' state via a supercritical bifurcation as the
forcing amplitude decreases. An approximate phase equation is derived, and an
analytic solution for the stripe state is obtained, through which the
asymmetric behavior of the stability border of the state is explained. The
phase equation, in particular the analytic solution, is found to be very useful
in understanding the stability borders of the homogeneous and stripe states of
the forced CGLE.Comment: 6 pages, 4 figures, 2 column revtex format, to be published in Phys.
Rev.
- …