4,292 research outputs found

    Gauged Fermionic Q-balls

    Full text link
    We present a new model for a non-topological soliton (NTS) that contains interacting fermions, scalar particles and a gauge field. Using a variational approach, we estimate the energy of the localized configuration, showing that it can be the lowest energy state of the system for a wide range of parameters.Comment: 5 pages, 2 figures; revised version to appear in Phys. Rev.

    The AdS/CFT/Unparticle Correspondence

    Get PDF
    We examine the correspondence between the anti-de Sitter (AdS) description of conformal field theories (CFTs) and the unparticle description of CFTs. We show how unparticle actions are equivalent to holographic boundary actions for fields in AdS, and how massive unparticles provide a new type of infrared cutoff that can be simply implemented in AdS by a soft breaking of conformal symmetry. We also show that processes involving scalar unparticles with dimensions d_s<2 or fermion unparticles with dimensions d_f<5/2 are insensitive to ultraviolet cutoff effects. Finally we show that gauge interactions for unparticles can be described by bulk gauge interactions in AdS and that they correspond to minimal gauging of the non-local effective action, and we compute the fermion unparticle production cross-section.Comment: 26 pages, 1 figur

    The Frequency Dependent Conductivity of Electron Glasses

    Full text link
    Results of DC and frequency dependent conductivity in the quantum limit, i.e. hw > kT, for a broad range of dopant concentrations in nominally uncompensated, crystalline phosphorous doped silicon and amorphous niobium-silicon alloys are reported. These materials fall under the general category of disordered insulating systems, which are referred to as electron glasses. Using microwave resonant cavities and quasi-optical millimeter wave spectroscopy we are able to study the frequency dependent response on the insulating side of the metal-insulator transition. We identify a quantum critical regime, a Fermi glass regime and a Coulomb glass regime. Our phenomenological results lead to a phase diagram description, or taxonomy, of the electrodynamic response of electron glass systems

    Effects of thermal nonequilibrium and non-uniform temperature gradients on the onset of convection in a heterogeneous porous medium

    Get PDF
    The simultaneous effect of local thermal nonequilibrium (LTNE), vertical heterogeneity of permeability, and non-uniform basic temperature gradient on the criterion for the onset of Darcy-Benard convection is studied. The eigenvalue problem is solved numerically using the Galerkin method. The interaction of various types of permeability heterogeneity and non-uniform basic temperature gradient functions on the stability characteristics of the system is analyzed. It is observed that the linear variation (about the mean) of the permeability and the basic temperature gradient with depth has no added effect on the criterion for the onset of convection. However, the concurrent variation in heterogeneous permeability and non-uniform basic temperature gradient functions has more stabilizing effect on the system, while opposite is the trend when the effect of non-uniform basic temperature gradient alone is present. (C) 2011 Elsevier Ltd. All rights reserved

    Coulomb gap in one-dimensional disordered electronic systems

    Full text link
    We study a one-dimensional system of spinless electrons in the presence of a long-range Coulomb interaction (LRCI) and a random chemical potential at each site. We first present a Tomonaga-Luttinger liquid (TLL) description of the system. We use the bosonization technique followed by the replica trick to average over the quenched randomness. An expression for the localization length of the system is then obtained using the renormalization group method and also a physical argument. We then find the density of states for different values of the energy; we get different expressions depending on whether the energy is larger than or smaller than the inverse of the localization length. We work in the limit of weak disorder where the localization length is very large; at that length scale, the LRCI has the effect of reducing the interaction parameter K of the TLL to a value much smaller than the noninteracting value of unity.Comment: Revtex, 6 pages, no figures; discussions have been expanded in several place

    Coulomb gap in one-dimensional disordered electron systems

    Full text link
    The density of states of one-dimensional disordered electron systems with long range Coulomb interaction is studied in the weak pinning limit. The density of states is found to follow a power law with an exponent determined by localization length, and this power law behavior is consistent with the existing numerical results.Comment: RevTeX4 file, 5 pages, no figures To appear in Physical Reviews

    Harmonic forcing of an extended oscillatory system: Homogeneous and periodic solutions

    Full text link
    In this paper we study the effect of external harmonic forcing on a one-dimensional oscillatory system described by the complex Ginzburg-Landau equation (CGLE). For a sufficiently large forcing amplitude, a homogeneous state with no spatial structure is observed. The state becomes unstable to a spatially periodic ``stripe'' state via a supercritical bifurcation as the forcing amplitude decreases. An approximate phase equation is derived, and an analytic solution for the stripe state is obtained, through which the asymmetric behavior of the stability border of the state is explained. The phase equation, in particular the analytic solution, is found to be very useful in understanding the stability borders of the homogeneous and stripe states of the forced CGLE.Comment: 6 pages, 4 figures, 2 column revtex format, to be published in Phys. Rev.
    corecore