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The simultaneous effect of local thermal nonequilibrium (LTNE), vertical heterogeneity of permeability, and
non-uniform basic temperature gradient on the criterion for the onset of Darcy–Benard convection is studied.
The eigenvalue problem is solved numerically using the Galerkin method. The interaction of various types of
permeability heterogeneity and non-uniform basic temperature gradient functions on the stability
characteristics of the system is analyzed. It is observed that the linear variation (about the mean) of the
permeability and the basic temperature gradient with depth has no added effect on the criterion for the onset
of convection. However, the concurrent variation in heterogeneous permeability and non-uniform basic
temperature gradient functions has more stabilizing effect on the system, while opposite is the trend when
the effect of non-uniform basic temperature gradient alone is present.
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1. Introduction

Buoyancy-driven convection in a layer of fluid (in a saturated
porous medium) heated uniformly from below has been studied
extensively by several researchers over the years because of its
natural occurrence and also its relevance in various applications such
as biomedical engineering, drying processes, thermal insulation,
radioactive waste management, transpiration cooling, geophysical
systems, and contaminant transport in groundwater, ceramic proces-
sing, solid-matrix compact heat exchangers andmany others. Copious
literature is available on this as well as related topics and it is well
documented in the literature (Ingham and Pop [1], Vafai [2], Nield and
Bejan [3], Vadasz [4]).

The effect of heterogeneity in either permeability or thermal
conductivity or both on thermal convective instability in a layer of
fluid in a porous medium is of importance since there can be dramatic
effects in the case of heterogeneity (Braester and Vadasz [5], Simmons
et al. [6] and Prasad and Simmons [7]). The effects of hydrodynamic
and thermal heterogeneity, for the case of variation in both the
horizontal and vertical directions, on the onset of convection in a
horizontal layer of saturated porous medium uniformly heated from
below, are studied analytically for the case of weak heterogeneity by
Nield and Kuznetsov [8]. A discussion on the effect of heterogeneity on
the onset of convection induced by a vertical density gradient in a
saturated porous medium has been made by Nield and Simmons [9].
Whereas, the combined effects of vertical and horizontal heteroge-
neity on the onset of transient convection in a porous medium are
investigated by Nield and Kuznetsov [10]. Recently, Nield and
Kuznetsov [11] have studied the effect of vertical heterogeneity on
the onset of convection in a horizontal layer of fluid in a saturated
porous medium, uniformly heated from below but with a non-
uniform basic temperature gradient resulting from transient heating
or otherwise. All the above studies are based on local thermal
equilibrium (LTE) model.

However, in many practical applications involving hyper-porous
materials and also media in which there is a large temperature
difference between the fluid and the solid phases, it has been realized
that the assumption of LTE model is inadequate for proper
understanding of the heat transfer problems. In such circumstances,
the local thermal non-equilibrium (LTNE) effects are to be taken into
consideration. Therefore, the recent trend in the study of thermal
convective instability problems in porousmedia is to account for LTNE
effects by considering a two-field model for energy equation each
representing the fluid and solid phases separately. Under certain
circumstances, investigations have been carried out in the recent past
to know LTNE effects on forced and free convection in fluid saturated
porous media.

The LTNE effects on forced convection flows in a porous medium
have been covered exhaustively in the excellent reviews by Vafai and
Amiri [12] and Kuznetsov [13]. Banu and Rees [14] have studied the
criterion for the onset of convection in a Darcy porous medium using
LTNE model. The effect of LTNE on the onset of convection in a porous
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layer has been studied using a non-Darcian model for stress-free
boundaries by Malashetty et al. [15]. Straughan [16] has considered a
problem of thermal convection in a fluid-saturated porous layer using
a global nonlinear stability analysis with a LTNE model. Postelnicu
[17] has studied the onset of Darcy–Brinkman convection using LTNE
model for rigid isothermal boundaries. Shivakumara et al. [18,19]
have analyzed the effects of temperature dependent viscosity and
quadratic density as well as boundary effects, while Lee et al. [20] have
investigated the effect of various forms of basic non-uniform
temperature gradients on the onset of thermal convection in a porous
layer using LTNE model. All these studies are limited to the case of
constant permeability.

In geophysical and engineering applications the porous domain is
frequently heterogeneous in permeability and also the possibility of
existing non-uniform temperature gradient due to differential heating
with depth is common. Therefore, the influence of heterogeneity in
permeability and non-uniform basic temperature gradient on natural
convection in a layer of porous medium is of practical interest. To the
best of our knowledge, the simultaneous effect of vertical heteroge-
neity in the permeability (existing due to series of horizontal layers in
each of which the permeability is uniform) and non-uniform basic
temperature gradient on the onset of convection in a Newtonian fluid
saturated horizontal porous layer heated from below using a LTNE
model has not received any attention in the literature despite its
importance in geophysical and engineering applications. The intent of
the present work is to develop the formalism required to determine
the criterion for the onset of convection and the analysis presented is
quite general. In the present study, the assumptions put forth by Nield
and Kuznetsov [11] are being used and the resulting eigenvalue
problem is solved numerically using the Galerkin method for various
interactions of vertical heterogeneity in permeability and non-
uniform basic temperature gradient functions and the results are
presented graphically. Furthermore, the effects of LTNE model over
the classical LTE model on the onset of convection are highlighted.

2. Mathematical formulation

The physical configuration is as shown in Fig. 1. It consists of an
incompressible Newtonian viscous fluid saturated heterogeneous
horizontal porous layer of characteristic thickness d confined by rigid
boundaries and heated from below. The lower surface is held at
constant temperature TL, while the upper surface is at TU (bTL). A
Cartesian co-ordinate system (x, y, z) is used with the origin at the
bottom of the porous layer and the z-axis directed vertically upward
in the direction of the gravitational field. The Oberbeck–Boussinesq
approximation on the density and LTNE with two-field model for
temperatures are used.

The basic equations governing the flow, following Nield and Bejan
[3], are:

∇·→q = 0 ð1Þ
g

z = 0

z = d
z

x
y

T = T
U

T = T
L

Fig. 1. Physical configuration.
ρ
0
ca
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∂t = −∇p + ρ
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→g− μ
K zð Þ

→q ð2Þ

ε ρ0 cð Þf
∂Tf
∂t + ρ0 cð Þf →q ·∇

� �
Tf = εkf∇

2Tf + h Ts−Tf
� �

ð3Þ

1−εð Þ ρ0 cð Þs
∂Ts
∂t = 1−εð Þks∇2Ts−h Ts−Tf

� �
ð4Þ

ρf = ρ0 1−β Tf−TL
� �h i

ð5Þ

where, →q the velocity vector, p the excessive pressure over the
reference hydrostatic value, ρf the fluid density, K(z) the variable
permeability of the porous medium, ca the acceleration coefficient, ε
the porosity of the porous medium, μ the fluid viscosity, Tf the
temperature of the fluid phase, Ts the temperature of the solid phase, c
the specific heat, kf the thermal conductivity of the fluid, ks the
thermal conductivity of the solid, β the thermal expansion coefficient
of the fluid and h is the inter-phase heat transfer coefficient which
depends on the nature of the porous matrix and the saturating fluid.
The vertical heterogeneity in the porous medium K(z) may be
visualized as one can divide the field into horizontal layers, within
each of which one can employ arithmetic mean permeability with the
mean taken over that particular layer [9]. In this way a continuously
varying permeability is discretized in terms of the vertical position
coordinate. The time derivative term is included in the momentum
equation to look eventually for the occurrence of oscillatory
convection.

Let us non-dimensionalize the variables by setting

x�; y�; z�ð Þ = x
d
;
y
d
;
z
d

� �
;
→q � =

→q

εκf = d
� � ; t� =

t

d2 = κf
� � ; p� =

p

μκf ε = K0

� �

T�
f =

Tf−TU
TL−TU

; T�
s =

Ts−TU
TL−TU

;

ð6Þ

where K0 is the mean value of K(z) and κf=kf/(ρ0c)f is the thermal
diffusivity of the fluid. Using the non-dimensional quantities in
Eq. (6), Eqs. (1)–(5) can be written (after dropping the asterisks) as

∇·→q = 0 ð7Þ

γa
∂→q
∂t = −∇p + RD Tf−

1
β TL−TUð Þ

� �
k̂−Γ zð Þ→q ð8Þ

∂Tf
∂t + →q ·∇

� �
Tf = ∇2Tf + H Ts−Tf

� �
ð9Þ

α
∂Ts
∂t = ∇2Ts−γH Ts−Tf

� �
: ð10Þ

Here, RD=ρ0βg(TL−TU)K0d/εμfκf is the Darcy–Rayleigh number,
H=hd2/εkf is the scaled inter-phase heat transfer coefficient, γa=
caK0κf/νd2 is the acceleration parameter, α=κf/κs is the ratio of
diffusivities, γ=εkf/(1−ε)ks is the porosity modified conductivity
ratio and Γ(z)=K0/K(z) is the permeability heterogeneity function.

The basic state is quiescent and is given by

→qb = 0; ∇pb = RD Tfb−
1

β TL−TUð Þ
� �

k̂ ð11a;bÞ

∂Tfb
∂t = ∇2Tfb; α

∂Tsb
∂t = ∇2Tsb: ð11c;dÞ

As propounded by Nield and Kuznetsov [11], a simplification in the
form of a quasi-static approximation is introduced which consists of
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freezing the basic temperature distributions at a given instant of time.
This simplification is justified so long as the disturbances are growing
faster than the basic profile is evolving [3]. Besides, it is assumed that
the solid and fluid phases have identical temperatures at the bounding
surfaces of the porous layer. Under the circumstances, the basic state
temperature distribution for fluid and solid phases admit a solution of
the form

− d
ΔT

dTfb
dz

= f zð Þ;− d
ΔT

dTsb
dz

= g zð Þ: ð11e; fÞ

Here, f(z) and g(z) are the basic non-uniform temperature gradients

forfluidand solidphases respectively such that∫
1

0

f zð Þdz = 1 = ∫
1

0

g zð Þdz.
We now perturb the basic solution and write

→q = →q ′; p = pb + p′; Tf = Tfb + T′f ; Ts = Tsb + T′s: ð12Þ

Eq. (12) is substituted into Eqs. (7)–(10) and linearized to get

∇⋅→q ′ = 0 ð13Þ

γa
∂→q ′

∂t = −∇p′ + RD T′f k̂−Γ zð Þ→q ′ ð14Þ

∂T′f
∂t + →q ′⋅∇

� �
Tfb = ∇2T′f + H T′s−T′f Þ

�
ð15Þ

α
∂T′s
∂t = ∇2T′s−γH T′s−T′f Þ:

�
ð16Þ

Eliminating the pressure term from the momentum equation by
taking curl twice and retaining the vertical component of the resulting
equation and assuming the normal mode solution in the form (after
noting the principle of exchange of stability holds [11] as there are no
physical mechanisms to make the system oscillatory),

w′; T′f ; T′s Þ = W zð Þ; Θ zð Þ;Φ zð Þ½ � exp ilx + imyð Þ
�

ð17Þ

leads to the following equations:

Γ zð Þ D2−a2
� �

W + DΓ zð ÞDW = −a2RDΘ ð18Þ

D2−a2−H
� �

Θ = −f zð ÞW−HΦ ð19Þ

D2−a2−γH
� �

Φ = −γHΘ: ð20Þ

Here, D=d/dz is the differential operator. The functions f(z) and
Γ(z)are chosen in the following form:

f zð Þ = 1 + α1 z−1
2

� �
+ α2 z2−1

3

� �
; Γ zð Þ = 1 + β1 z−1

2

� �
+ β2 z2−1

3

� �

ð21a;bÞ

where α1, α2, β1 and β2 are constants. It is noted that the above
quadratic functions have unit mean. For the homogeneous porous
medium and uniform temperature gradient case, α1=0=α2 and
β1=0=β2.

The boundaries are impermeable with constant temperatures and
hence the boundary conditions are:

W = 0; Θ = 0 = Φ: ð22Þ
3. Numerical solution

Eqs. (18)–(20) together with the boundary conditions Eq. (22)
constitute an eigenvalue problem with RD as the eigenvalue. The
resulting eigenvalue problem is solved numerically using the Galerkin
technique. In this method, the test (weighted) functions are same as
the base (trial) functions. Thus, W(z), Θ(z) and Φ(z) are expanded in
the series form

W zð Þ = ∑
n

i=1
Ai Wi zð Þ;Θ zð Þ = ∑

n

i=1
Bi Θi zð Þ;Φ zð Þ = ∑

n

i=1
Ci Φi zð Þ ð23Þ

where Ai, Bi and Ci are unknown coefficients. The base functionsWi(z),
Θi(z) and Φi(z) are assumed in the following form:

Wi = z 1−zð ÞT�
i−1; Θi = z z−1ð ÞT�

i−1 = Φi ð24Þ

where Ti*s are the modified Chebyshev polynomials, such that Wi, Θi

and Φi satisfy the corresponding boundary conditions. Multiplying
Eq. (18) by Wj(z), Eq. (19) by Θj(z) and Eq. (20) by Φj(z); performing
the integration by parts with respect to z between z=0 and 1, and
using the boundary conditions, we obtain the following system of
linear homogeneous algebraic equations:

CjiAi + DjiBi = 0 ð25Þ

EjiAi + FjiBi + GjiCi = 0 ð26Þ

HjiBi + IjiCi = 0: ð27Þ

The coefficients Cji– Iji involve the inner products of the base
functions and are given by

Cji = b 1 + α1 z−1= 2ð Þ + α2 z2−1= 3
� �� �

DWjDWi N

+ b 1 + α1 z−1 = 2ð Þ + α2 z2−1 = 3
� �� �

WjWi N

−b α1 + 2α2zð ÞWjDWi N

Dji = −a2RDbWjΘi N ;Eji = −b 1 + β1 z−1 = 2ð Þ + β2 z2−1= 3
� �� �

ΘjWi N

Fji = bDΘjDΘi N + a2 + H
� �

bΘjΘi N ;Gji = −HbΘjΦi N

Hji = −γHbΦjΘi N ; Iji = bDΦjDΦi N + a2 + γH
� �

bΦjΦi N

ð28Þ

where the inner product is defined as b⋯ N = ∫
1

0

⋯ð Þdz:
The characteristic equation formed from Eqs. (25)–(27) for the

existence of non-trivial solution is solved numerically, for different
values of γ and H as well as for different forms of f(z) and Γ(z). The
Newton–Raphsonmethod is used to obtain the Rayleigh number RD as
a function of wave number a when all the parameters and functions
are fixed: the bisectionmethod is built-in to locate the critical stability
parameters (RDc,ac) to the desired degree of accuracy. It is observed
that the series expansions in Eq. (23) converge (whenwe consider the
first six terms).

4. Results and discussion

The effects of LTNE, the vertical heterogeneity of permeability and
a non-uniform basic temperature gradient resulting from transient
heating are investigated on the criterion for the onset of convection in
a layer of Newtonian fluid saturated Darcy porous medium. Various
models of f(z) and Γ(z) as shown in Table 1 are considered in
analyzing respectively the interaction of non-uniform basic temper-
ature gradient and the vertical heterogeneity of permeability on the
onset of convection. The resulting eigenvalue problem for different
models is solved numerically by the Galerkinmethod. At this juncture,
it is instructive to look at the critical Darcy–Rayleigh number (RDc)
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Fig. 2. Neutral curves for different forms of f(z) and Γ(z) when (a) H=100 (b) γ=0.5.

Table 1
Various forms of basic temperature gradients f(z) and the vertical heterogeneity of
permeability Γ(z).

Models α1 α2 β1 β2 Nature of f(z) Nature of Γ(z)

M1 0 0 0 0 Uniform Homogeneous
M2 1 0 1 0 Linear variation in z Linear variation in z
M3 0 1 0 1 Quadratic variation

in z only
Quadratic variation
in z only

M4 1 1 1 1 General quadratic
variation in z

General quadratic
variation in z

M5 1 1 0 0 General quadratic
variation in z

Homogeneous

M6 0 0 1 1 Uniform General quadratic
variation in z
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and the corresponding wave number (ac) for various levels of the
Galerkin approximation to know the process of convergence and also
the accuracy of the results. Table 2 shows the numerically computed
values of RDc and the corresponding ac. From the tabulated values, it is
clear that the results converge for six terms in the Galerkin expansion.
Also, the critical stability parameters (RDc,ac) for model M1 are found
to be in close agreement with those of Banu and Rees [14] obtained
analytically.

The neutral stability curves in the (RD,a) plane for differentmodels
M1–M6 are presented in Fig. 2(a) for two values of γ(=1, 5) when
H=100, and for two values of H(=10,100) when γ=0.5 in Fig. 2(b).
The region below each curve corresponds to stable state. From these
figures it is obvious that the neutral curves exhibit single minimum.
The Darcy–Rayleigh numbers turn out to be the same for models M1
andM2 as well asM3 andM4 as observed in the case of LTEmodel. It is
thus observed that the linear variation in f(z) and Γ(z) with depth has
no additional influence on the stability characteristics of the system.
However, the Darcy–Rayleigh numbers are different for models M5
and M6. The effect of increasing γ is to reduce the Darcy–Rayleigh
number and to decrease the region of stability, while opposite is the
trend with increasing H.

The variation of RDc and ac as a function of log10 H is shown in
Fig. 3(a) and (b) respectively for different values of γ for the models
M1–M6. Fig. 3(a) demonstrates that, RDc is independent of γ for
smaller values of H and observed that it remains almost independent
of H for γ≥10, for a particular model considered. This is because, for
very small values of H and higher values of γ there is no significant
transfer of heat between the fluid and solid phases, and hence the
condition for the onset of convection is not affected by the properties
of the solid phase. This corresponds to classical LTE case. For other
values of γ, however, RDc varies with γ as well as H but remains
independent of H at higher values of H. This may be attributed to
the fact that, at higher values of H, the condition for the onset of
Table 2
Comparison of results for different orders of Galerkin approximations for H=100.

γ Model Approximations

i= j=1 i= j=2 i= j=5 i= j=6

RDc ac RDc ac RDc ac RDc ac

0.5 M1 96.347 3.488 96.347 3.488 95.314 3.463 95.314 3.463
M2 96.347 3.488 95.702 3.473 95.314 3.463 95.314 3.463
M3 105.803 3.706 105.544 3.700 104.504 3.674 104.504 3.674
M4 105.803 3.706 104.637 3.680 105.713 3.701 105.712 3.701
M5 100.765 3.706 82.106 3.817 80.525 3.944 80.539 3.943
M6 101.165 3.489 97.281 3.614 96.538 3.588 96.538 3.588

1 M1 73.221 3.294 73.221 3.294 72.340 3.271 72.340 3.271
M2 73.221 3.294 72.699 3.280 72.340 3.271 72.340 3.271
M3 80.898 3.479 80.687 3.474 79.789 3.452 79.789 3.452
M4 80.898 3.479 79.947 3.457 80.774 3.474 80.774 3.474
M5 77.046 3.479 63.212 3.550 62.286 3.627 62.296 3.627
M6 76.882 3.294 74.470 3.378 73.800 3.355 73.799 3.355
convection is based on the mean properties of the medium and hence
the critical Rayleigh number varies with γ. The figures also indicate
that for moderate and large values of H, the critical Darcy–Rayleigh
number decreases with increasing values of γ. This is because an
increase in the value of γ leads to a significant transfer of heat
through both the solid and fluid phases. Further inspection of the
figures reveal that the system is more stabilizing for models M3 and
M4 and least stable for model M5. In other words, the presence of
heterogeneity in permeability is to delay the onset of convection
when compared to homogeneous porous medium case. Moreover,
the critical Darcy–Rayleigh numbers for model M5 are lower than
those of model M6 indicating that the effect of non-uniform basic
temperature gradient is to hasten the onset of convection.

Fig. 3(b) indicates that, ac remains unaffected and also takes the
same value in the small-H as well as the large-H limits (LTE case),
while at intermediate values of H (LTNE case) it attains a maximum
value for different values of γ. Moreover, at intermediate values of H,
we note that an increase in the value of γ is to decrease the critical
wave number and hence its effect is to increase the size of convection
cells for all six models considered. A closer inspection at the figure
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reveals that the critical wave number is higher for model M5 and the
least (as well as same) for models M1 and M2.

5. Conclusions

From the foregoing study, it is observed that the linear variation
(about the mean) of the permeability and basic temperature gradient
with depth has no added effect on the criterion for the onset of
convection. However, the system is more stabilizing when both
heterogeneous permeability and non-uniform basic temperature
gradient functions vary simultaneously with depth, and destabilizing
the most when the effect of non-uniform basic temperature gradient
alone is present. Thus the effect of heterogeneous permeability is to
delay the onset of convection and opposite is the trend in the presence
of non-uniform basic temperature gradient. The porosity modified
conductivity ratio γ has no effect on the onset of convection in the
small-H limit, while for other values ofH increase in the value of γ is to
hasten the onset of convection. The LTNE model exhibits more
stabilizing effect on the system than LTE model. The critical wave
number for different values of γ in the small-H and large-H limits
coincide but attain a maximum value at the intermediate values of H,
and in that case increasing γ is to decrease the critical wave number.
Moreover, the critical wave number is the least for the case of
homogeneous porous medium and uniform temperature gradient,
and higher if only the basic temperature gradient function varies
quadratically.
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