43 research outputs found

    Effects of Weightlessness on Human Fluid and Electrolyte Physiology

    Get PDF
    The changes that occur in human fluid and electrolyte physiology during the acute and adaptive phases of adaptation to spaceflight are summarized. A number of questions remain to be answered. At a time when plasma volume and extracellular fluid volume are contracted and salt and water intake is unrestricted. ADH does not correct the volume deficit and serum sodium decreases. Change in secretion or activity of a natriuretic factor during spaceflight is one possible explanation. Recent identification of a polypeptide hormone produced in cardiac muscle cells which is natiuretic, is hypotensive, and has an inhibitory effect on renin and aldosterone secretion has renewed interest in the role of a natriuretic factor. The role of this atrial natriuretic factor (ANF) in both long- and short-term variation in extracellular volumes and in the inability of the kidney to bring about an escape from the sodium-retaining state accompanying chronic cardiac dysfunction makes it reasonable to look for a role of ANF in the regulation of sodium during exposure to microgravity. Prostaglandin-E is another hormone that may antagonize the action of ADH. Assays of these hormones will be performed on samples from crew members in the future

    A Systems Approach to the Physiology of Weightlessness

    Get PDF
    A systems approach to the unraveling of the complex response pattern of the human subjected to weightlessness is presented. The major goal of this research is to obtain an understanding of the role that each of the major components of the human system plays following the transition to and from space. The cornerstone of this approach is the utilization of a variety of mathematical models in order to pose and test alternative hypotheses concerned with the adaptation process. An integrated hypothesis for the human physiological response to weightlessness is developed

    American Cancer Society/American Society of Clinical Oncology Breast Cancer Survivorship Care Guideline

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136493/1/caac21319_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136493/2/caac21319-sup-0001-suppinfo1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136493/3/caac21319.pd

    Methodological consensus on clinical proton MRS of the brain: Review and recommendations

    Get PDF
    Š 2019 International Society for Magnetic Resonance in Medicine Proton MRS (1H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use

    Randomized placebo-controlled trial on azithromycin to reduce the morbidity of bronchiolitis in Indigenous Australian infants: rationale and protocol

    Get PDF
    Background: Acute lower respiratory infections are the commonest cause of morbidity and potentially preventable mortality in Indigenous infants. Infancy is also a critical time for post-natal lung growth and development. Severe or repeated lower airway injury in very young children likely increases the likelihood of chronic pulmonary disorders later in life. Globally, bronchiolitis is the most common form of acute lower respiratory infections during infancy. Compared with non-Indigenous Australian infants, Indigenous infants have greater bacterial density in their upper airways and more severe bronchiolitis episodes. Our study tests the hypothesis that the anti-microbial and anti-inflammatory properties of azithromycin, improve the clinical outcomes of Indigenous Australian infants hospitalised with bronchiolitis.Methods: We are conducting a dual centre, randomised, double-blind, placebo-controlled, parallel group trial in northern Australia. Indigenous infants (aged ≤ 24-months, expected number = 200) admitted to one of two regional hospitals (Darwin, Northern Territory and Townsville, Queensland) with a clinical diagnosis of bronchiolitis and fulfilling inclusion criteria are randomised (allocation concealed) to either azithromycin (30 mg/kg/dose) or placebo administered once weekly for three doses. Clinical data are recorded twice daily and nasopharyngeal swab are collected at enrolment and at the time of discharge from hospital. Primary outcomes are 'length of oxygen requirement' and 'duration of stay,' the latter based upon being judged as 'ready for respiratory discharge'. The main secondary outcome is readmission for a respiratory illness within 6-months of leaving hospital. Descriptive virological and bacteriological (including development of antibiotic resistance) data from nasopharyngeal samples will also be reported.Discussion: Two published studies, both involving different patient populations and settings, as well as different macrolide antibiotics and treatment duration, have produced conflicting results. Our randomised, placebo-controlled trial of azithromycin in Indigenous infants hospitalised with bronchiolitis is designed to determine whether it can reduce short-term (and potentially long-term) morbidity from respiratory illness in Australian Indigenous infants who are at high risk of developing chronic respiratory illness. If azithromycin is efficacious in reducing the morbidly of Indigenous infants hospitalised with bronchiolitis, the intervention would lead to improved short term (and possibly long term) health benefits. Trial registration: Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12610000326099

    Blood Stage Malaria Vaccine Eliciting High Antigen-Specific Antibody Concentrations Confers No Protection to Young Children in Western Kenya

    Get PDF
    The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children.A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg) or Rabipur(R) rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations.374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42) antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7).FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42) vaccine development should focus on other formulations and antigen constructs.Clinicaltrials.gov NCT00223990

    Impact of Optimized Breastfeeding on the Costs of Necrotizing Enterocolitis in Extremely Low Birthweight Infants

    Get PDF
    To estimate risk of NEC for ELBW infants as a function of preterm formula and maternal milk (MM) intake and calculate the impact of suboptimal feeding on NEC incidence and costs
    corecore