3 research outputs found

    Exploration of Sweeping Effect: Droplet Coalescence Jumping of a Rolling and Static Droplet

    No full text
    The sweeping effect of merged droplets plays a key role in enhancing application performance due to the continuing coalescence caused by the horizontal jumping velocity. Most studies focused on static droplet coalescence jumping, while moving droplet coalescence is poorly understood. In this work, we experimentally and numerically study the coalescence of a rolling droplet and a static one. When the droplet radius ratio is larger than 0.8, as the dimensionless initial velocity increases and the vertical jumping velocity first decreases and then increases. The critical dimensionless initial velocity Vc* corresponding to the minimum vertical jumping velocity could be estimated as 0.9(rs2rm2). When the droplet radius ratio is smaller than 0.8, the dimensionless initial velocity has a positive effect on the vertical jumping velocity. The mechanism of the vertical jumping velocity can be attributed to two parts: liquid bridge impact and retraction of the merged droplet. The squeezing effect generated by the initial velocity between the two droplets promotes the growth of the liquid bridge and enhances the impact effect of the liquid bridge but weakens the upward velocity accumulation caused by the retraction of the merged droplets. However, different from the vertical jumping velocity, the horizontal jumping velocity is approximately proportional to the dimensionless initial velocity. The outcome of our work elucidates a fundamental understanding of a rolling droplet coalescing with a static one

    Exploration of Sweeping Effect: Droplet Coalescence Jumping of a Rolling and Static Droplet

    No full text
    The sweeping effect of merged droplets plays a key role in enhancing application performance due to the continuing coalescence caused by the horizontal jumping velocity. Most studies focused on static droplet coalescence jumping, while moving droplet coalescence is poorly understood. In this work, we experimentally and numerically study the coalescence of a rolling droplet and a static one. When the droplet radius ratio is larger than 0.8, as the dimensionless initial velocity increases and the vertical jumping velocity first decreases and then increases. The critical dimensionless initial velocity Vc* corresponding to the minimum vertical jumping velocity could be estimated as 0.9(rs2rm2). When the droplet radius ratio is smaller than 0.8, the dimensionless initial velocity has a positive effect on the vertical jumping velocity. The mechanism of the vertical jumping velocity can be attributed to two parts: liquid bridge impact and retraction of the merged droplet. The squeezing effect generated by the initial velocity between the two droplets promotes the growth of the liquid bridge and enhances the impact effect of the liquid bridge but weakens the upward velocity accumulation caused by the retraction of the merged droplets. However, different from the vertical jumping velocity, the horizontal jumping velocity is approximately proportional to the dimensionless initial velocity. The outcome of our work elucidates a fundamental understanding of a rolling droplet coalescing with a static one
    corecore