101,886 research outputs found

    On the checkerboard pattern and the autocorrelation of photoemission data in high temperature superconductors

    Full text link
    In the pseudogap state the spectrum of the autocorrelation of angle resolved photoemission (AC-ARPES) data of Bi2212 presents non-dispersive peaks in momentum space which compare well with those responsible of the checkerboard pattern found in the density of states by Scanning Tunneling Microscopy. This similarity suggests that the checkerboard pattern originates from peaks in the joint density of states, as the dispersive peaks found in the superconducting state do. Here we show that the experimental AC-ARPES spectrum can be reproduced within a model for the pseudogap with no charge-ordering or symmetry breaking. We predict that, because of the competition of superconductivity and pseudogap, in the superconducting state, the AC-ARPES data of underdoped cuprates will present both dispersive and non-dispersive peaks and they will be better observed in cuprates with low critical temperature. We finally argue that the AC-ARPES data is a complementary and convenient way to measure the arc length.Comment: 5 pages, 3 eps figure

    Equation of state of strongly coupled Hamiltonian lattice QCD at finite density

    Get PDF
    We calculate the equation of state of strongly coupled Hamiltonian lattice QCD at finite density by constructing a solution to the equation of motion corresponding to an effective Hamiltonian using Wilson fermions. We find that up to and beyond the chiral symmetry restoration density the pressure of the quark Fermi sea can be negative indicating its mechanical instability. This result is in qualitative agreement with continuum models and should be verifiable by future numerical simulations.Comment: 14 pages, 2 EPS figures. Revised version - added discussion on the equation of stat

    Algorithms for outerplanar graph roots and graph roots of pathwidth at most 2

    Full text link
    Deciding whether a given graph has a square root is a classical problem that has been studied extensively both from graph theoretic and from algorithmic perspectives. The problem is NP-complete in general, and consequently substantial effort has been dedicated to deciding whether a given graph has a square root that belongs to a particular graph class. There are both polynomial-time solvable and NP-complete cases, depending on the graph class. We contribute with new results in this direction. Given an arbitrary input graph G, we give polynomial-time algorithms to decide whether G has an outerplanar square root, and whether G has a square root that is of pathwidth at most 2

    Comparison of fragment partitions production in peripheral and central collisions

    Get PDF
    Ensembles of single-source events, produced in peripheral and central collisions and correponding respectively to quasi-projectile and quasi-fusion sources, are analyzed. After selections on fragment kinematic properties, excitation energies of the sources are derived using the calorimetric method and the mean behaviour of fragments of the two ensembles are compared. Differences observed in their partitions, especially the charge asymmetry, can be related to collective energy deposited in the systems during the collisions.Comment: 7 pages, 2 figures, presented at the International Workshop on Multifragmentation and Related Topics, Caen France, 4-7th november 2007 (IWM2007

    The Wide-field High-resolution Infrared TElescope (WHITE)

    Full text link
    The Wide-field High-resolution Infrared TElescope (WHITE) will be dedicated in the first years of its life to carrying out a few (well focused in terms of science objectives and time) legacy surveys. WHITE would have an angular resolution of ~0.3'' homogeneous over ~0.7 sq. deg. in the wavelength range 1 - 5 um, which means that we will very efficiently use all the available observational time during night time and day time. Moreover, the deepest observations will be performed by summing up shorter individual frames. We will have a temporal information that can be used to study variable objects. The three key science objectives of WHITE are : 1) A complete survey of the Magellanic Clouds to make a complete census of young stellar objects in the clouds and in the bridge and to study their star formation history and the link with the Milky Way. The interaction of the two clouds with our Galaxy might the closest example of a minor merging event that could be the main driver of galaxy evolution in the last 5 Gyrs. 2) The building of the first sample of dusty supernovae at z<1.2 in the near infrared range (1-5 um) to constrain the equation of state from these obscured objects, study the formation of dust in galaxies and build the first high resolution sample of high redshift galaxies observed in their optical frame 3) A very wide weak lensing survey over that would allow to estimate the equation of state in a way that would favourably compete with space projects.Comment: Invited talk to the 2nd ARENA Conference : "The Astrophysical Science Cases at Dome C" Potsdam 17-21 September, 200
    • …
    corecore