4 research outputs found

    Diseño y modelado del simulador web que permite realizar estudios de factibilidad con los datos necesarios para ejecutar instalaciones de energía solar On Grid en Colombia.

    Get PDF
    Este trabajo se enfoca sobre la energía solar renovable, es producida mediante la radiación solar y es la fuente de la energía eléctrica fotovoltaica, la cual se genera mediante un dispositivo semiconductor denominado célula fotovoltaica (Aguilar, Aledo y Quiles, 2016). Para empezar el simulador web es un objeto de aprendizaje que, mediante un programa de software, intenta modelar parte de una réplica de los fenómenos de la realidad y su propósito es que el usuario construya conocimiento a partir del trabajo exploratorio, la inferencia y el aprendizaje por el descubrimiento (Barrientos. M, 2011). El diseño y modelado del simulador web una vez desarrollado y puesto en marcha se integrará en una página web llamada Colombia Renovable. Además; tiene como valor agregado, un sistema de cotizaciones online que basándose en la necesidad del cliente reúne todos los equipos necesarios (kits de equipos) de la mejor calidad para realizar las instalaciones solares. Por cada estudio generado con el simulador, se presenta 1 cotización con tres diferentes opciones de kits de equipos solares de los posibles proveedores. En otras palabras; se actúa como intermediarios para vender los productos que ofrecen las empresas y para generar utilidades por cada venta confirmada. Para el diseño y modelado del simulador web, se crean diferentes procesos bajo lenguajes de programación que permite analizar los siguientes datos de entrada suministrados por los usuarios: Localización de la instalación fotovoltaica • Seleccione Departamento: en este apartado se selecciona el departamento donde se realizará el estudio de factibilidad. • Seleccione Municipio o Ciudad: en este apartado se selecciona el Municipio o Ciudad donde se realizará el estudio de factibilidad. Datos de su consumo eléctrico • Consumo eléctrico del último mes (KWh/mes). La puede encontrar en información técnica presente en la factura eléctrica. • Consumo eléctrico promedio de los últimos 6 meses (KWh/mes). La puede encontrar en información técnica presente en la factura eléctrica. • Valor total de la energía facturada del último mes (COP).Informacioˊnpresenteenlafacturaeleˊctrica.Porcentajedeenergıˊaeleˊctricaparacubrirconelsistemasolar.Estratosocioeconoˊmico.Elresultadodeesteestudiodefactibilidadcontaraˊconloselementosnecesariosparaquelosinteresadosenrealizarinstalacionessolaresdispongandeinformacioˊnmaˊsampliaquelespermitalatomadedecisionesparalaejecucioˊndelproyecto.Lametodologıˊaparaeldesarrollodeldisen~oymodeladodelsimuladorwebiniciaconlarecoleccioˊndelainformacioˊnnecesariaparasuejecucioˊn,lacualtienequeverconelestudiodelmercado,laviabilidadelproyecto,aspectosteˊcnicos,aspectoseconoˊmicosyaspectoslegales.Seguidamente;Secreanlosdiferentesprocesosquetienecomopropoˊsitoeladecuadofuncionamientodelsimulador.Demaneraconjunta;sedisen~alapaˊginawebllamadaColombiaRenovableconsusrespectivosmenuˊs,laopcioˊndegenerarlascotizacionesonlineysedeterminanlosequipossolaresquesemostraraˊnenlosestudiosdefactibilidad.Thisworkfocusesonrenewablesolarenergy,thatisproducedbysolarradiationandisthesourceofphotovoltaicelectricalenergy,whichisgeneratedbyasemiconductordevicecalledaphotovoltaiccell(Aguilar,AledoandQuiles,2016).Cellsaremanufacturedwithsemiconductormaterialswiththebasiccomponentofaphotovoltaicsystem.Photovoltaicsystemscanbedividedintotwosegments.Theautonomousphotovoltaicsystemsthatareusedtomeetacertainelectricaldemandinremotelocations,isolatedfromtheelectricitygridand,ontheotherhand,thephotovoltaicsystemsconnectedtothegridthathasthemainobjectiveofmaximizingannuallytheproductionofelectricalenergythatisinjectedintothegrid.First,thewebsimulatorisalearningobjectthat,throughasoftwareprogram,attemptstomodelpartofareplicaofthephenomenaofrealityanditspurposeisfortheusertobuildknowledgefromexploratorywork(Barrientos.M,2011).Thedesignandmodelingofthewebsimulatoroncedevelopedandlaunchedwillbeintegratedintoawebsitecalled"ColombiaRenovable".Inaddition;ithasasanaddedvalue,anonlinequotesystemthatbasedonthecustomersneedbringstogetherallthenecessaryequipment(equipmentkits)ofthebestqualitytocarryoutthesolarinstallations.Foreachstudygeneratedwiththesimulator,1quoteispresentedwiththreedifferentoptionsofsolarequipmentkitsfrompotentialsuppliers.Inotherwords;itactsasintermediariestoselltheproductsofferedbycompaniesandtogenerateprofitsforeachconfirmedsale.Forthedesignandmodelingofthewebsimulator,differentprocessesarecreatedunderprogramminglanguagesthatallowanalyzingthefollowinginputdataprovidedbyusers:LocationofphotovoltaicinstallationSelectDepartment:Inthissection,thedepartmentwherethefeasibilitystudywillbeperformedisselected.SelectMunicipalityorCity:inthissection,theMunicipalityorCitywherethefeasibilitystudywillbecarriedoutisselected.PowerConsumptionDataLastmonthspowerconsumption(KWh/month).Itcanbefoundintechnicalinformationpresentontheelectricbill.Averagepowerconsumptionofthelast6months(KWh/month).Itcanbefoundintechnicalinformationpresentontheelectricbill.Totalvalueoflastmonthsbilledenergy( COP). Información presente en la factura eléctrica. • Porcentaje de energía eléctrica para cubrir con el sistema solar. • Estrato socio económico. El resultado de este estudio de factibilidad contará con los elementos necesarios para que los interesados en realizar instalaciones solares dispongan de información más amplia que les permita la toma de decisiones para la ejecución del proyecto. La metodología para el desarrollo del diseño y modelado del simulador web inicia con la recolección de la información necesaria para su ejecución, la cual tiene que ver con el estudio del mercado, la viabilidad el proyecto, aspectos técnicos, aspectos económicos y aspectos legales. Seguidamente; Se crean los diferentes procesos que tiene como propósito el adecuado funcionamiento del simulador. De manera conjunta; se diseña la página web llamada Colombia Renovable con sus respectivos menús, la opción de generar las cotizaciones online y se determinan los equipos solares que se mostrarán en los estudios de factibilidad.This work focuses on renewable solar energy, that is produced by solar radiation and is the source of photovoltaic electrical energy, which is generated by a semiconductor device called a photovoltaic cell (Aguilar, Aledo and Quiles, 2016). Cells are manufactured with semiconductor materials with the basic component of a photovoltaic system. Photovoltaic systems can be divided into two segments. The autonomous photovoltaic systems that are used to meet a certain electrical demand in remote locations, isolated from the electricity grid and, on the other hand, the photovoltaic systems connected to the grid that has the main objective of maximizing annually the production of electrical energy that is injected into the grid. First, the web simulator is a learning object that, through a software program, attempts to model part of a replica of the phenomena of reality and its purpose is for the user to build knowledge from exploratory work (Barrientos. M, 2011). The design and modeling of the web simulator once developed and launched will be integrated into a website called "Colombia Renovable". In addition; it has as an added value, an online quote system that based on the customer's need brings together all the necessary equipment (equipment kits) of the best quality to carry out the solar installations. For each study generated with the simulator, 1 quote is presented with three different options of solar equipment kits from potential suppliers. In other words; it acts as intermediaries to sell the products offered by companies and to generate profits for each confirmed sale. For the design and modeling of the web simulator, different processes are created under programming languages that allow analyzing the following input data provided by users: Location of photovoltaic installation • Select Department: In this section, the department where the feasibility study will be performed is selected. • Select Municipality or City: in this section, the Municipality or City where the feasibility study will be carried out is selected. Power Consumption Data • Last month's power consumption (KWh/month). It can be found in technical information present on the electric bill. • Average power consumption of the last 6 months (KWh/month). It can be found in technical information present on the electric bill. • Total value of last month's billed energy ( COP). Information present on the electric bill. • Percentage of electrical energy to cover with the solar system. • Socio-economic stratum. The result of this study will have the necessary elements for those interested in making solar installations to have more extensive information that allows them to make decisions for the execution of the project. The methodology for the development of the design and modeling of the web simulator begins with the collection of the information necessary for its execution, which has to do with market study, project feasibility, technical aspects, economic aspects, and legal aspects. Next; The different processes that the proper functioning of the simulator. Together; the website called Colombia Renovable is designed with their respective menus, the option to generate the online quotes, and determine the solar equipment that will be shown in the feasibility studies

    Rapidity and transverse momentum dependence of inclusive J/ψ production in pp collisions at √s=7 TeV

    No full text
    The ALICE experiment at the LHC has studied inclusive J/ψ production at central and forward rapidities in pp collisions at √s=7 TeV. In this Letter, we report on the first results obtained detecting the J/ψ through the dilepton decay into e+e− and μ+μ− pairs in the rapidity ranges |y|<0.9 and 2.5<y<4, respectively, and with acceptance down to zero pT. In the dielectron channel the analysis was carried out on a data sample corresponding to an integrated luminosity Lint=5.6 nb−1 and the number of signal events is NJ/ψ=352±32(stat.)±28(syst.); the corresponding figures in the dimuon channel are Lint=15.6 nb−1 and NJ/ψ=1924±77(stat.)±144(syst.). The measured production cross sections are σJ/ψ(|y|<0.9)=10.7±1.0(stat.)±1.6(syst.)−2.3+1.6(syst.pol.)μb and σJ/ψ(2.5<y<4)=6.31±0.25(stat.)±0.76(syst.)−1.96+0.95(syst.pol.)μb. The differential cross sections, in transverse momentum and rapidity, of the J/ψ were also measured

    Heavy flavour decay muon production at forward rapidity in proton–proton collisions at √s=7 TeV

    No full text
    The production of muons from heavy flavour decays is measured at forward rapidity in proton–proton collisions at √s=7 TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity Lint=16.5 nb−1. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2.5<y<4, over the transverse momentum range 2<pt<12 GeV/c. The results are compared to predictions based on perturbative QCD calculations

    Production of charged pions, kaons and protons at large transverse momenta in pp and Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    Transverse momentum spectra of π±, K± and p(p¯) up to pT = 20 GeV/c at mid-rapidity in pp, peripheral (60–80%) and central (0–5%) Pb–Pb collisions at √sNN = 2.76 TeV have been measured using the ALICE detector at the Large Hadron Collider. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at pT ≈ 3 GeV/c in central Pb–Pb collisions. Below the peak, pT 10 GeV/c particle ratios in pp and Pb–Pb collisions are in agreement and the nuclear modification factors for π±, K± and p(p¯) indicate that, within the systematic and statistical uncertainties, the suppression is the same. This suggests that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets
    corecore