412 research outputs found

    A rush to judgment on Th17

    Get PDF
    Some immunologists have characterized T helper (Th)17 T cells as the master mediators of tissue damage in a variety of pathological conditions. New data now demonstrate that Th1 and Th17 T cells are independently capable of inducing disease in two established models of autoimmunity. Thus, the role of Th17 cytokines as the central mediators of pathological tissue damage seems to require clarification

    The Protective and Therapeutic Function of Small Heat Shock Proteins in Neurological Diseases

    Get PDF
    Historically, small heat shock proteins (sHSPs) have been extensively studied in the context of being intracellular molecular chaperones. However, recent studies looking at the role of sHSPs in neurological diseases have demonstrated a near universal upregulation of certain sHSPs in damaged and diseased brains. Initially, it was thought that sHSPs are pathological in these disease states because they are found in the areas of damage. However, transgenic overexpression and exogenous administration of sHSPs in various experimental disease paradigms have shown just the contrary – that sHSPs are protective, not pathological. This review examines sHSPs in neurological diseases and highlights the potential for using these neuroprotective sHSPs as novel therapeutics. It first addresses the endogenous expression of sHSPs in a variety of neurological disorders. Although many studies have examined the expression of sHSPs in neurological diseases, there are no review articles summarizing these data. Furthermore, it focuses on recent studies that have investigated the therapeutic potential of sHSPs for neurological diseases. Finally, it will explain what we think is the function of endogenous sHSPs in neurological diseases

    Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Experimental autoimmune encephalomyelitis is a widely used animal model to understand not only multiple sclerosis but also basic principles of immunity. The disease is scored typically by observing signs of paralysis, which do not always correspond with pathological changes.</p> <p>Methods</p> <p>Experimental autoimmune encephalomyelitis was induced in transgenic mice expressing an injury responsive luciferase reporter in astrocytes (GFAP-luc). Bioluminescence in the brain and spinal cord was measured non-invasively in living mice. Mice were sacrificed at different time points to evaluate clinical and pathological changes. The correlation between bioluminescence and clinical and pathological EAE was statistically analyzed by Pearson correlation analysis.</p> <p>Results</p> <p>Bioluminescence from the brain and spinal cord correlates strongly with severity of clinical disease and a number of pathological changes in the brain in EAE. Bioluminescence at early time points also predicts severity of disease.</p> <p>Conclusion</p> <p>These results highlight the potential use of bioluminescence imaging to monitor neuroinflammation for rapid drug screening and immunological studies in EAE and suggest that similar approaches could be applied to other animal models of autoimmune and inflammatory disorders.</p
    corecore