2 research outputs found

    Discovery of Small Molecule Kappa Opioid Receptor Agonist and Antagonist Chemotypes through a HTS and Hit Refinement Strategy

    No full text
    Herein we present the outcome of a high throughput screening (HTS) campaign-based strategy for the rapid identification and optimization of selective and general chemotypes for both kappa (κ) opioid receptor (KOR) activation and inhibition. In this program, we have developed potent antagonists (IC<sub>50</sub> < 120 nM) or agonists of high binding affinity (<i>K</i><sub>i</sub> < 3 nM). In contrast to many important KOR ligands, the compounds presented here are highly modular, readily synthesized, and, in most cases, achiral. The four new chemotypes hold promise for further development into chemical tools for studying the KOR or as potential therapeutic lead candidates

    Discovery of ML314, a Brain Penetrant Nonpeptidic β‑Arrestin Biased Agonist of the Neurotensin NTR1 Receptor

    No full text
    The neurotensin 1 receptor (NTR1) is an important therapeutic target for a range of disease states including addiction. A high-throughput screening campaign, followed by medicinal chemistry optimization, led to the discovery of a nonpeptidic β-arrestin biased agonist for NTR1. The lead compound, 2-cyclopropyl-6,7-dimethoxy-4-(4-(2-methoxyphenyl)-piperazin-1-yl)­quinazoline, <b>32</b> (ML314), exhibits full agonist behavior against NTR1 (EC<sub>50</sub> = 2.0 μM) in the primary assay and selectivity against NTR2. The effect of <b>32</b> is blocked by the NTR1 antagonist SR142948A in a dose-dependent manner. Unlike peptide-based NTR1 agonists, compound <b>32</b> has no significant response in a Ca<sup>2+</sup> mobilization assay and is thus a biased agonist that activates the β-arrestin pathway rather than the traditional G<sub><i>q</i></sub> coupled pathway. This bias has distinct biochemical and functional consequences that may lead to physiological advantages. Compound <b>32</b> displays good brain penetration in rodents, and studies examining its in vivo properties are underway
    corecore