1,085 research outputs found

    Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity

    Full text link
    Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schr\"odinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with the previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from literature and provide updated values for the real and imaginary part of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.Comment: J. Opt., in pres

    Epsilon-Near-Zero Grids for On-chip Quantum Networks

    Get PDF
    Realization of an on-chip quantum network is a major goal in the field of integrated quantum photonics. A typical network scalable on-chip demands optical integration of single photon sources, optical circuitry and detectors for routing and processing of quantum information. Current solutions either notoriously experience considerable decoherence or suffer from extended footprint dimensions limiting their on-chip scaling. Here we propose and numerically demonstrate a robust on-chip quantum network based on an epsilon-near-zero (ENZ) material, whose dielectric function has the real part close to zero. We show that ENZ materials strongly protect quantum information against decoherence and losses during its propagation in the dense network. As an example, we model a feasible implementation of an ENZ network and demonstrate that quantum information can be reliably sent across a titanium nitride grid with a coherence length of 434 nm, operating at room temperature, which is more than 40 times larger than state-of-the-art plasmonic analogs. Our results facilitate practical realization of large multi-node quantum photonic networks and circuits on-a-chip.Comment: 13 pages, 5 figure

    Refraction enhancement in plasmonics by the coherent control of plasmon resonances

    Get PDF
    A plasmonic nanoantenna probed by a plane-polarized optical field in a medium with no gain materials can show zero absorption or even amplification, while exhibiting maximal polarizability. This occurs through coupling to an adjacent nanoantenna in a specially designed metamolecule, which is pumped by an orthogonal optical field with phase shift. The introduced scheme is a classical counterpart of an effect known in quantum optics as enhancement of the index of refraction (EIR). In contrary to electromagnetically induced transparency (EIT), where the medium is rendered highly dispersive at the point of zero susceptibility and minimum absorption, in the EIR the system exhibits large susceptibility and low dispersion at the point of zero or negative absorption. The plasmonic analogue of the EIR allows for coherent control over the polarizability and absorption of plasmonic nanoantennas, offering a novel approach to all optical switching and coherent control of transmission, diffraction and polarization conversion properties of plasmonic nanostructures, as well as propagation properties of surface plasmon polaritons on metasurfaces. It may also open up the way for lossless or amplifying propagation of optical waves in zero-index to high refractive index plasmonic metamaterial

    Applicability of point dipoles approximation to all-dielectric metamaterials

    Get PDF
    All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this contribution we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to ~0.8 of the lattice constant. The results provide important guidelines for design and optimization of all-dielectric metamaterials.Comment: 10 pages, 5 fugures, submitted to Physical Review

    Dark-field hyperlens: Super-resolution imaging of weakly scattering objects

    Get PDF
    We propose and numerically demonstrate a technique for subwavelength imaging based on a metal-dielectric multilayer hyperlens designed in such a way that only the large-wavevector waves are transmitted while all propagating waves from the image area are blocked by the hyperlens. As a result, the image plane only contains scattered light from subwavelength features of the objects and is free from background illumination. Similar in spirit to conventional dark-field microscopy, the proposed dark-field hyperlens is promising for optical imaging of weakly scattering subwavelength objects, such as optical nanoscopy of label-free biological objects.Comment: 6 figure

    Regulation of family reunification in the EU : Shaping the profile of Finland

    Get PDF
    This thesis touches upon the subject of family reunification, being highly problematised and politicised in the context of the EU member states. Demonisation of the matter, largely stems from the fact that reunification based on family ties is the main mode of entry onto the territory of the EU available for third country nationals. Intensified further in the context of the erupted European refugee crisis, family reunification is viewed by many EU member states as an area to create ever further restrictive regulations. The thesis explores how regulation over family reunification is currently being executed in the EU, and how nation states participate in its management. The work identifies that procedural sides of family reunification have further consequences for members of a reunited family, such as development of dependancy. Furthermore, the Finnish family migration legislation is being examined from the perspective of possible ‘window of opportunity’ for deepening restrictions, implied by the present political discourse within the country

    From Topology to Generalised Dimensional Reduction

    Get PDF
    In the usual procedure for toroidal Kaluza-Klein reduction, all the higher-dimensional fields are taken to be independent of the coordinates on the internal space. It has recently been observed that a generalisation of this procedure is possible, which gives rise to lower-dimensional ``massive'' supergravities. The generalised reduction involves allowing gauge potentials in the higher dimension to have an additional linear dependence on the toroidal coordinates. In this paper, we show that a much wider class of generalised reductions is possible, in which higher-dimensional potentials have additional terms involving differential forms on the internal manifold whose exterior derivatives yield representatives of certain of its cohomology classes. We consider various examples, including the generalised reduction of M-theory and type II strings on K3, Calabi-Yau and 7-dimensional Joyce manifolds. The resulting massive supergravities support domain-wall solutions that arise by the vertical dimensional reduction of higher-dimensional solitonic p-branes and intersecting p-branes.Comment: Latex, 24 pages, no figures, typo corrected, reference added and discussion of duality extende
    • 

    corecore