4 research outputs found
The role of 2-oxoglutarate-dependent dioxygenases in epigenetic regulation of cancer
Abstract
2-oxoglutarate-dependent dioxygenases (2-OGDDs) are an enzyme family that contains many enzymes that modify chromatin in extensive ways. These enzymes include several histone lysine demethylases (KDMs) and TET enzymes that convert methylated cytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) ultimately leading to DNA demethylation. Disturbed DNA and histone methylation are found in many cancers. However, the role of KDMs and TETs behind these oncogenic changes has so far not been fully investigated. This study focused on the role of these chromatin-modifying enzymes in cancers with special emphasis on enzyme kinetic studies.
Cancers with inactivating fumarate hydratase (FH), succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) mutations accumulate fumarate, succinate and R-2-hydroxyglutarate, respectively. In this study we showed how these cancer-associated 2-oxoglutarate (2-OG) analogues can inhibit the TET enzymes and many of the KDMs leading to lower 5-hmC levels and increased H3K27 and H3K9 methylation on chromatin, respectively. We also characterized kinetic properties of acute myeloid leukaemia (AML)-associated TET2 mutants and found that their ability to bind 2-OG or iron was impaired leading to diminished catalytic activity.
Tumours are often hypoxic due to inadequate vasculature and blood supply. The TET enzymes and KDMs require oxygen for the reactions they catalyse. We determined the oxygen affinity of TETs and many KDMs and found that a H3K27 demethylase KDM6A has a remarkably low affinity for oxygen indicating that it is inactivated in hypoxic tumours and tissues. H3K27 methylation was found to be increased in hypoxic cells and this blocked cell differentiation.
Altogether, these studies shed light on the mechanisms behind the altered DNA and histone methylation found in several cancers with hypoxic conditions or FH, SDH and IDH mutations. Altered DNA and histone methylation has previously been associated with progression of cancer, such as epithelial-to-mesenchymal transition (EMT). We now linked catalytic inhibition of 2-OGDDs to disturbed DNA and histone methylation that can account for altered cell differentiation, EMT and increased aggressiveness and invasiveness of cancers.Tiivistelmä
2-oksoglutaraatista riippuvaiset dioksygenaasit ovat entsyymiperhe, johon kuuluu useita entsyymejä, jotka muokkaavat kromatiinin epigeneettisiä merkkejä monin tavoin. Näitä entsyymejä ovat mm. DNA:n demetylaatioon vaikuttavat TET-entsyymit sekä useat histonidemetylaasit. Vaikka muutoksia DNA:n ja histonien metylaatiotasoissa on havaittu useissa syövissä, ei näiden entsyymien roolia muutosten taustalla ole vielä tutkittu. Tämä tutkimus kohdistui näiden epigenetiikkaan vaikuttavien entsyymien roolin ymmärtämiseen syövissä keskittyen erityisesti kyseisten entsyymien kinetiikkaan.
Useissa syövissä on havaittu fumaraattihydrataasin, sukkinaattidehydrogenaasin ja isositraattidehydrogenaasien aktiivisuuteen vaikuttavia mutaatioita, jotka johtavat fumaraatin, sukkinaatin ja R-2-hydroksiglutaraatin kertymiseen syöpäsoluihin. Tässä tutkimuksessa osoitimme, kuinka nämä karsinogeeniset 2-oksoglutaraattianalogit voivat inhiboida TET-entsyymejä ja histonidemetylaaseja, mikä alentaa 5-hydroksimetyylisytosiinitasoja ja lisää histonien metylaatiota. Näytämme myös, kuinka tietyillä akuutissa myelooisessa leukemiassa esiintyvillä TET2-mutanteilla on heikentynyt kyky sitoa 2-oksoglutaraattia tai rautaa, mikä johtaa entsyymien aktiivisuuden laskuun.
Kasvainkudoksissa happipitoisuudet ovat usein matalia nopean kasvun ja puutteellisen verisuonituksen vuoksi. TET-entsyymit ja histonidemetylaasit vaativat happea katalysoimissaan reaktioissa. Määritimme TET-entsyymien ja monien histonidemetylaasien riippuvuutta hapesta ja osoitimme, että H3K27-histonidemetylaasi KDM6A on erittäin riippuvainen hapesta, mikä osoittaa, ettei se pysty toimimaan kasvaimissa ja kudoksissa, joissa happipitoisuudet ovat matalia. Huomasimme, että vähähappisissa olosuhteissa solujen H3K27 metylaatio on lisääntynyt, mikä johti erilaistumisen estymiseen soluissa.
Tämä tutkimus paljasti uusia mekanismeja useista syövistä löytyneiden muuntuneiden DNA:n ja histonien metylaatiotasojen taustalla. Häiriintynyt DNA:n ja histonien metylaatio on aiemmin yhdistetty syöpien etenemiseen, erityisesti solujen erilaistumisen häiriintymisen kannalta. Tässä tutkimuksessa yhdistimme 2-oksoglutaraatista riippuvaisten entsyymien inhibition häiriintyneeseen DNA:n ja histonien metylaatioon, joka voi johtaa muuntuneeseen solujen erilaistumiseen ja lopulta lisääntyneeseen syöpien aggressiivisuuteen ja invasiivisuuteen
Cancer-associated 2-oxoglutarate analogues modify histone methylation by inhibiting histone lysine demethylases
Abstract
Histone lysine demethylases (KDMs) are 2-oxoglutarate-dependent dioxygenases (2-OGDDs) that regulate gene expression by altering chromatin structure. Their dysregulation has been associated with many cancers. We set out to study the catalytic and inhibitory properties of human KDM4A, KDM4B, KDM5B, KDM6A and KDM6B, aiming in particular to reveal which of these enzymes are targeted by cancer-associated 2-oxoglutarate (2-OG) analogues. We used affinity-purified insect cell-produced enzymes and synthetic peptides with trimethylated lysines as substrates for the in vitro enzyme activity assays. In addition, we treated breast cancer cell lines with cell-permeable forms of 2-OG analogues and studied their effects on the global histone methylation state. Our data show that KDMs have substrate specificity. Among the enzymes studied, KDM5B had the highest affinity for the peptide substrate but the lowest affinity for the 2-OG and the Fe2+ cosubstrate/cofactors. R-2-hydroxyglutarate (R-2HG) was the most efficient inhibitor of KDM6A, KDM4A and KDM4B, followed by S-2HG. This finding was supported by accumulations of the histone H3K9me3 and H3K27me3 marks in cells treated with the cell-permeable forms of these compounds. KDM5B was especially resistant to inhibition by R-2HG, while citrate was the most efficient inhibitor of KDM6B. We conclude that KDM catalytic activity is susceptible to inhibition by tumorigenic 2-OG analogues and suggest that the inhibition of KDMs is involved in the disease mechanism of cancers in which these compounds accumulate, such as the isocitrate dehydrogenase mutations
Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate
Abstract
Oxygen sensing is central to metazoan biology and has implications for human disease. Mammalian cells express multiple oxygen-dependent enzymes called 2-oxoglutarate (OG)-dependent dioxygenases (2-OGDDs), but they vary in their oxygen affinities and hence their ability to sense oxygen. The 2-OGDD histone demethylases control histone methylation. Hypoxia increases histone methylation, but whether this reflects direct effects on histone demethylases or indirect effects caused by the hypoxic induction of the HIF (hypoxia-inducible factor) transcription factor or the 2-OG antagonist 2-hydroxyglutarate (2-HG) is unclear. Here, we report that hypoxia promotes histone methylation in a HIF- and 2-HG–independent manner. We found that the H3K27 histone demethylase KDM6A/UTX, but not its paralog KDM6B, is oxygen sensitive. KDM6A loss, like hypoxia, prevented H3K27 demethylation and blocked cellular differentiation. Restoring H3K27 methylation homeostasis in hypoxic cells reversed these effects. Thus, oxygen directly affects chromatin regulators to control cell fate