58 research outputs found

    Butt Joint Reinforcement in Parallel-Laminated Veneer (PLV) Lumber

    Get PDF
    Parallel-laminated veneer (PLV) is a high-strength structural material consisting of thin parallel-laminated wood veneers. The use of graphite-cloth reinforcement, placed on either side of a butt joint in 1 1/2- by 3 1/2- by 32-inch Douglas-fir PLV tensile members, was assessed. The finite-element method of analysis was used to predict the behavior in different unreinforced and reinforced butt-jointed PLV tensile members. Relationships between the reinforcing parameters—length, modulus of elasticity, and thickness—and the stresses in the wood and reinforcement components were developed by regression analysis techniques. The reinforcing mechanism reduced the peak stresses at the butt joint and hence increased the ultimate strength of the member. Design of PLV material whose strength is limited by shear stresses that develop at the butt joint is facilitated by use of the proposed relationships.Experimental testing confirmed the predictions of the finite-element analysis. Failure initiated at the unreinforced joint in the specimens. Average tensile strength increased and variability decreased in reinforced specimens. Application of a small amount of reinforcement at the butt joint has been shown to enhance PLV performance

    Fiber-Reinforced Wood Composites

    Get PDF
    The technical feasibility of producing internally reinforced laminated wood is evaluated experimentally. Numerous fiber reinforcements and adhesives are assessed, and effects of several processing and environmental parameters are included. Results demonstrate the increased strength and stiffness to be achieved under both tension and flexure by adding fiber reinforcement. Glass reinforcement is particularly suitable

    Current-induced vortex nucleation and annihilation in vortex domain walls

    No full text
    International audienceWe report observations of the effect of electrical currents on the propagation and spin structure of vortex walls in NiFe wires. We find that magnetic vortices are nucleated and annihilated due to the spin torque effect. The velocity is found to be directly correlated with these transformations and decreases with increasing number of vortices. The transformations are observed in wide elements, while in narrower structures the propagation of single vortex walls prevails
    • …
    corecore