3 research outputs found

    Onset of zooplanktivory and optimal water flow rates for prey capture in newly settled polyps of ten Caribbean coral species

    Get PDF
    Zooplanktivory is an important source of nutrients in corals, providing up to 35% of daily metabolic energy requirements in some species. However, little is known about coral zooplanktivory shortly after larval settlement and metamorphosis. In most species it is unclear if, when and under which conditions newly settled polyps are able to capture and ingest prey. This remains a critical knowledge gap, as zooplanktivory could allow coral settlers to replenish energy reserves shortly after metamorphosis, possibly improving settler condition during one of their most vulnerable life stages. Here, we documented the onset of prey (Artemia salina nauplii) capture in ten Caribbean coral species and assessed optimal water flow rates (WFR) for prey capture in five of these species. All species initiated zooplanktivory within six days following metamorphosis, with the exception of Acropora palmata which was never observed capturing nauplii during our 20-day study. Optimal WFR for prey capture varied among species, with Favia fragum displaying maximum prey capture rates in zero flow and Diploria labyrinthiformis most effectively capturing nauplii under WFR of 5–20 cm s−1. Under each species’ optimum WFR, prey capture abilities varied considerably, with F. fragum capturing up to one nauplius every two minutes compared to one nauplius every nine minutes in Colpophyllia natans. Using these findings, we make species-specific recommendations to optimize coral husbandry and larval-based restoration practices for these ten coral species

    Historical changes (1905-present) in catch size and composition reflect altering fisheries practices on a small Caribbean island

    Get PDF
    Effective assessments of the status of Caribbean fish communities require historical baselines to adequately understand how much fish communities have changed through time. To identify such changes and their causes, we compiled a historical overview using data collected at the beginning (1905-1908), middle (1958-1965) and end (1984-2016) of the 20th century, of the artisanal fishing practices and their effects on fish populations around Curaçao, a small island in the southern Caribbean. We documented historical trends in total catch, species composition, and catch sizes per fisher per month for different types of fisheries and related these to technological and environmental changes affecting the island's fisheries and fish communities. We found that since 1905, fishers targeted species increasingly farther from shore after species occurring closer to shore had become rare. This resulted in surprisingly similar catches in terms of weight, but not composition. Large predatory reef fishes living close to shore (e.g., large Epinephelid species) had virtually disappeared from catches around the mid-20th century, questioning the use of data from this period as baseline data for modern day fish assessments. Secondly, we compared fish landings to in-situ counts from 1969 to estimate the relative contributions of habitat destruction and overfishing to the changes in fish abundance around Curaçao. The decline in coral dominated reef communities corresponded to a concurrent decrease in the abundance and diversity of smaller reef fish species not targeted by fishers, suggesting habitat loss, in addition to fishing, caused the observed declines in reef fish abundance around Curaçao.</p

    Data used to assess historical changes (1905-present) in catch size and composition reflecting altering fisheries practices on a small Caribbean island

    No full text
    Effective assessments of the status of Caribbean fish communities require historical baselines to adequately understand how much fish communities have changed through time. To identify such changes and their causes, we compiled a historical overview using data collected at the beginning (1905-1908), middle (1958-1965) and end (1984-2016) of the 20th century, of the artisanal fishing practices and their effects on fish populations around Curaçao, a small island in the southern Caribbean. We documented historical trends in total catch, species composition, and catch sizes per fisher per month for different types of fisheries and related these to technological and environmental changes affecting the island’s fisheries and fish communities. We found that since 1905, fishers targeted species increasingly farther from shore after species occurring closer to shore had become rare. This resulted in surprisingly similar catches in terms of weight, but not composition. Large predatory reef fishes living close to shore (e.g., large Epinephelid species) had virtually disappeared from catches around the mid-20th century, questioning the use of data from this period as baseline data for modern day fish assessments. Secondly, we compared fish landings to in-situ counts from 1969 to estimate the relative contributions of habitat destruction and overfishing to the changes in fish abundance around Curaçao. The decline in coral dominated reef communities corresponded to a concurrent decrease in the abundance and diversity of smaller reef fish species not targeted by fishers, suggesting habitat loss, in addition to fishing, caused the observed declines in reef fish abundance around Curaçao
    corecore