3,471 research outputs found
Studies of the Linearity of the ATLAS EM Barrel Calorimeter
The ATLAS experiment uses an accordion shaped lead/liquid argon sampling calorime- ter for electromagnetic calorimetry. During beam test campaigns in summer 2002 and summer 2004 dedicated linearity scans were carried out. During the 2004 run, not only the beam energy but also the material in front of the calorimeter has been varied. This contribution discusses methods to achieve an excellent linearity and resolution even in the presence of a significant amount of upstream material. These methods were developed and tested on data obtained from the described beam tests and on a Geant4 simulation of the beam test setup
Digitization of LAr calorimeter for CSC simulations
This note describes the digitization of the LAr signals, which is the step creating RDO from Geant4 Hits, as used during the production of the CSC simulated samples with athena release 12
Recommended from our members
Search for the Higgs boson decays H -> ee and H -> eμ in pp collisions at root s=13 TeV with the ATLAS detector
Searches for the Higgs boson decays H -> ee and H -> e mu are performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in pp collisions at root s = 13 TeV at the LHC. No significant signals are observed, in agreement with the Standard Model expectation. For a Higgs boson mass of 125 GeV, the observed (expected) upper limit at the 95% confidence level on the branching fraction B(H -> ee) is 3.6 x 10(-4) (3.5 x 10(-4)) and on B(H -> e mu) is 6.2 x 10(-5) (5.9 x 10(-5)). These results represent improvements by factors of about five and six on the previous best limits on B(H -> ee) and B(H -> e mu) respectively. (C) 2019 The Author. Published by Elsevier B.V.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
2004 ATLAS Combined Testbeam : Computation and Validation of the Electronic Calibration Constants for the Electromagnetic Calorimeter
From July to November 2004, a full slice of the ATLAS barrel detector was studied in testbeam. A complete electromagnetic barrel module was used, read by the final electronics and operated by ATLAS TDAQ software. This note describes in details the electronic calibration procedure and the cell energy reconstruction: each step of the procedure and its associated software is explicitly described. The general calibration procedure is very similar to the one applied in previous barrel and endcap standalone testbeams. Emphasis is put on tools developed in the context of the combined testbeam which can be used for commissioning and operation of the calorimeters in ATLAS. Many validation studies were performed on each calibration constant. Previously unobserved effects such as the FEB temperature dependence of some constants were observed. Overall, the calibration performances are at the expected level
Calorimeter Clustering Algorithms: Description and Performance
This note describes the performance of the calorimeter clustering algorithms used for ATLAS, and which provide inputs for particle identification. ATLAS uses two principal algorithms. The first is the ``sliding-window'' algorithm, which clusters calorimeter cells within fixed-size rectangles; results from this are used for electron, photon, and tau lepton identification. The second is the ``topological'' algorithm, which clusters together neighboring cells, as long as the signal in the cells is significant compared to noise. The results of this second algorithm are further used for jet and missing transverse energy reconstruction. This note first summarizes the steps of the calorimeter reconstruction software. A detailed description of the two clustering algorithms is then given. A last section summarizes their performance. The results presented in this note are obtained with the ATLAS athena software releases 12 and 13
IL-23-mediated mononuclear phagocyte crosstalk protects mice from Citrobacter rodentium-induced colon immunopathology.
Gut homeostasis and mucosal immune defense rely on the differential contributions of dendritic cells (DC) and macrophages. Here we show that colonic CX3CR1(+) mononuclear phagocytes are critical inducers of the innate response to Citrobacter rodentium infection. Specifically, the absence of IL-23 expression in macrophages or CD11b(+) DC results in the impairment of IL-22 production and in acute lethality. Highlighting immunopathology as a death cause, infected animals are rescued by the neutralization of IL-12 or IFNγ. Moreover, mice are also protected when the CD103(+) CD11b(-) DC compartment is rendered deficient for IL-12 production. We show that IL-12 production by colonic CD103(+) CD11b(-) DC is repressed by IL-23. Collectively, in addition to its role in inducing IL-22 production, macrophage-derived or CD103(-) CD11b(+) DC-derived IL-23 is required to negatively control the otherwise deleterious production of IL-12 by CD103(+) CD11b(-) DC. Impairment of this critical mononuclear phagocyte crosstalk results in the generation of IFNγ-producing former TH17 cells and fatal immunopathology
Stimulus - response curves of a neuronal model for noisy subthreshold oscillations and related spike generation
We investigate the stimulus-dependent tuning properties of a noisy ionic
conductance model for intrinsic subthreshold oscillations in membrane potential
and associated spike generation. On depolarization by an applied current, the
model exhibits subthreshold oscillatory activity with occasional spike
generation when oscillations reach the spike threshold. We consider how the
amount of applied current, the noise intensity, variation of maximum
conductance values and scaling to different temperature ranges alter the
responses of the model with respect to voltage traces, interspike intervals and
their statistics and the mean spike frequency curves. We demonstrate that
subthreshold oscillatory neurons in the presence of noise can sensitively and
also selectively be tuned by stimulus-dependent variation of model parameters.Comment: 19 pages, 7 figure
Recommended from our members
Combination of Searches for Invisible Higgs Boson Decays with the ATLAS Experiment
Dark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H -> invisible decays where H is produced according to the standard model via vector boson fusion, Z(ll)H, and W/Z(had)H, all performed with the ATLAS detector using 36.1 fb(-1) of pp collisions at a center-of-mass energy of root s = 13 TeV at the LHC. In combination with the results at root s = 7 and 8 TeV, an exclusion limit on the H -> invisible branching ratio of 0.26(0.17(-0.05)(+0.07)) at 95% confidence level is observed (expected).ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS; CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; COST, European Union; ERC, European Union; ERDF, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d' Avenir Labex, ANR, France; Idex, ANR, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF, Greece; BSF-NSF, Israel; GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society, United Kingdom; Leverhulme Trust, United KingdomThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Search for invisible Higgs boson decays in vector boson fusion at root s=13 TeV with the ATLAS detector
We report a search for Higgs bosons that are produced via vector boson fusion and subsequently decay into invisible particles. The experimental signature is an energetic jet pair with invariant mass of O(1) TeVand O(100) GeVmissing transverse momentum. The analysis uses 36.1 fb(-1) of pp collision data at root s = 13 TeV recorded by the ATLAS detector at the LHC. In the signal region the 2252 observed events are consistent with the background estimation. Assuming a 125 GeV scalar particle with Standard Model cross sections, the upper limit on the branching fraction of the Higgs boson decay into invisible particles is 0.37 at 95% confidence level where 0.28 was expected. This limit is interpreted in Higgs portal models to set bounds on the wimp-nucleon scattering cross section. We also consider invisible decays of additional scalar bosons with masses up to 3 TeV for which the upper limits on the cross section times branching fraction are in the range of 0.3-1.7 pb. (C) 2019 The Author(s). Published by Elsevier B.V.ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmar; DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canarie, Canada; CRC, Canada; Compute Canada, Canada; COST, European Union; ERC, European Union; ERDF, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d' Avenir Labex, ANR, France; Investissements d' Avenir Idex, ANR, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF, Greece; Thales programme - EU-ESF, Greece; Aristeia programme - EU-ESF, Greece; Greek NSRF, Greece; BSFNSF, Israel; GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; Royal Society, United Kingdom; Leverhulme Trust, United KingdomOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
- …