4,329 research outputs found
Coherent vibrations of submicron spherical gold shells in a photonic crystal
Coherent acoustic radial oscillations of thin spherical gold shells of
submicron diameter excited by an ultrashort optical pulse are observed in the
form of pronounced modulations of the transient reflectivity on a subnanosecond
time scale. Strong acousto-optical coupling in a photonic crystal enhances the
modulation of the transient reflectivity up to 4%. The frequency of these
oscillations is demonstrated to be in good agreement with Lamb theory of free
gold shells.Comment: Error in Eqs.2 and 3 corrected; Tabl. I corrected; Fig.1 revised; a
model that explains the dependence of the oscillation amplitude of the
transient reflectivity with wavelength adde
From attosecond to zeptosecond coherent control of free-electron wave functions using semi-infinite light fields
Light-electron interaction in empty space is the seminal ingredient for
free-electron lasers and also for controlling electron beams to dynamically
investigate materials and molecules. Pushing the coherent control of free
electrons by light to unexplored timescales, below the attosecond, would enable
unprecedented applications in light-assisted electron quantum circuits and
diagnostics at extremely small timescales, such as those governing
intramolecular electronic motion and nuclear phenomena. We experimentally
demonstrate attosecond coherent manipulation of the electron wave function in a
transmission electron microscope, and show that it can be pushed down to the
zeptosecond regime with existing technology. We make a relativistic pulsed
electron beam interact in free space with an appropriately synthesized
semi-infinite light field generated by two femtosecond laser pulses reflected
at the surface of a mirror and delayed by fractions of the optical cycle. The
amplitude and phase of the resulting coherent oscillations of the electron
states in energymomentum space are mapped via momentum-resolved ultrafast
electron energy-loss spectroscopy. The experimental results are in full
agreement with our theoretical framework for light-electron interaction, which
predicts access to the zeptosecond timescale by combining semi-infinite X-ray
fields with free electrons.Comment: 22 pages, 6 figure
C^{2} formulation of Euler fluid
The Hamiltonian formalism for the continuous media is constructed using the
representation of Euler variables in phase
space.Comment: 8 page
Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscopy
We demonstrate that light-induced heat pulses of different duration and
energy can write skyrmions in a broad range of temperatures and magnetic field
in FeGe. Using a combination of camera-rate and pump-probe cryo-Lorentz
Transmission Electron Microscopy, we directly resolve the spatio-temporal
evolution of the magnetization ensuing optical excitation. The skyrmion lattice
was found to maintain its structural properties during the laser-induced
demagnetization, and its recovery to the initial state happened in the
sub-{\mu}s to {\mu}s range, depending on the cooling rate of the system
Symmetries and reversing symmetries of toral automorphisms
Toral automorphisms, represented by unimodular integer matrices, are
investigated with respect to their symmetries and reversing symmetries. We
characterize the symmetry groups of GL(n,Z) matrices with simple spectrum
through their connection with unit groups in orders of algebraic number fields.
For the question of reversibility, we derive necessary conditions in terms of
the characteristic polynomial and the polynomial invariants. We also briefly
discuss extensions to (reversing) symmetries within affine transformations, to
PGL(n,Z) matrices, and to the more general setting of integer matrices beyond
the unimodular ones.Comment: 34 page
Static Solitons of the Sine-Gordon Equation and Equilibrium Vortex Structure in Josephson Junctions
The problem of vortex structure in a single Josephson junction in an external
magnetic field, in the absence of transport currents, is reconsidered from a
new mathematical point of view. In particular, we derive a complete set of
exact analytical solutions representing all the stationary points (minima and
saddle-points) of the relevant Gibbs free-energy functional. The type of these
solutions is determined by explicit evaluation of the second variation of the
Gibbs free-energy functional. The stable (physical) solutions minimizing the
Gibbs free-energy functional form an infinite set and are labelled by a
topological number Nv=0,1,2,... Mathematically, they can be interpreted as
nontrivial ''vacuum'' (Nv=0) and static topological solitons (Nv=1,2,...) of
the sine-Gordon equation for the phase difference in a finite spatial interval:
solutions of this kind were not considered in previous literature. Physically,
they represent the Meissner state (Nv=0) and Josephson vortices (Nv=1,2,...).
Major properties of the new physical solutions are thoroughly discussed. An
exact, closed-form analytical expression for the Gibbs free energy is derived
and analyzed numerically. Unstable (saddle-point) solutions are also classified
and discussed.Comment: 17 pages, 4 Postscript figure
A photon transport problem with a time-dependent point source
We consider a time-dependent problem of photon transport in an interstellar cloud with a point photon source modeled by a Dirac δ functional. The existence of a unique distributional solution to this problem is established by using the theory of continuous semigroups of operators on locally convex spaces coupled with a constructive approach for producing spaces of generalized functions
Dressing chain for the acoustic spectral problem
The iterations are studied of the Darboux transformation for the generalized
Schroedinger operator. The applications to the Dym and Camassa-Holm equations
are considered.Comment: 16 pages, 6 eps figure
- …