98 research outputs found

    Wigner distribution transformations in high-order systems

    Get PDF
    By combining the definition of the Wigner distribution function (WDF) and the matrix method of optical system modeling, we can evaluate the transformation of the former in centered systems with great complexity. The effect of stops and lens diameter are also considered and are shown to be responsible for non-linear clipping of the resulting WDF in the case of coherent illumination and non-linear modulation of the WDF when the illumination is incoherent. As an example, the study of a single lens imaging systems illustrates the applicability of the method.Comment: 16 pages, 7 figures. To appear in J. of Comp. and Appl. Mat

    Explainable deep learning models in medical image analysis

    Full text link
    Deep learning methods have been very effective for a variety of medical diagnostic tasks and has even beaten human experts on some of those. However, the black-box nature of the algorithms has restricted clinical use. Recent explainability studies aim to show the features that influence the decision of a model the most. The majority of literature reviews of this area have focused on taxonomy, ethics, and the need for explanations. A review of the current applications of explainable deep learning for different medical imaging tasks is presented here. The various approaches, challenges for clinical deployment, and the areas requiring further research are discussed here from a practical standpoint of a deep learning researcher designing a system for the clinical end-users.Comment: Preprint submitted to J.Imaging, MDP

    OW-SLR: Overlapping Windows on Semi-Local Region for Image Super-Resolution

    Full text link
    There has been considerable progress in implicit neural representation to upscale an image to any arbitrary resolution. However, existing methods are based on defining a function to predict the Red, Green and Blue (RGB) value from just four specific loci. Relying on just four loci is insufficient as it leads to losing fine details from the neighboring region(s). We show that by taking into account the semi-local region leads to an improvement in performance. In this paper, we propose applying a new technique called Overlapping Windows on Semi-Local Region (OW-SLR) to an image to obtain any arbitrary resolution by taking the coordinates of the semi-local region around a point in the latent space. This extracted detail is used to predict the RGB value of a point. We illustrate the technique by applying the algorithm to the Optical Coherence Tomography-Angiography (OCT-A) images and show that it can upscale them to random resolution. This technique outperforms the existing state-of-the-art methods when applied to the OCT500 dataset. OW-SLR provides better results for classifying healthy and diseased retinal images such as diabetic retinopathy and normals from the given set of OCT-A images. The project page is available at https://rishavbb.github.io/ow-slr/index.htm
    • …
    corecore