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Wigner distribution transformations in high-order systems
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Abstract

By combining the de3nition of the Wigner distribution function (WDF) and the matrix method of optical
system modeling, we can evaluate the transformation of the former in centered systems with great complexity.
The e7ect of stops and lens diameter are also considered and are shown to be responsible for nonlinear clipping
of the resulting WDF in the case of coherent illumination and nonlinear modulation of the WDF when the
illumination is incoherent. As an example, the study of a single lens imaging system illustrates the applicability
of the method.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Wigner distribution function (WDF) provides a convenient way to describe an optical signal
in space and spatial frequency [4,7,10]. The propagation of an optical signal through 3rst-order
optical systems is well described by the WDF transformations [5–7], allowing the reconstruction of
the propagated signal. Real optical systems are not 3rst order and the use of the WDF for optical
system design presumes the ability to predict how it is transformed by systems with aberrations.
Almeida [1] proposed a method to determine the aberration coe?cients for optical systems using
matrix methods and calculated the necessary coe?cients for seventh-order modeling of centered
systems based on spherical surfaces. The extension of the matrix method to cylindrical surfaces has
also been proposed [15]. Based on the fact that the WDF lies between Fourier and geometric optics,
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we show that geometric optics matrix coe?cients can be used to predict WDF transformations and,
hence, can play an important role in optical system design.

2. Transformation of the WDF

The WDF of a scalar, time harmonic, and coherent 3eld distribution ’(q; z) can be de3ned at any
arbitrary z = const: plane in terms of either the 3eld distribution or its Fourier transform ’(p) =∫
’(q) exp(−ikqTp) dq [5,10]

W (q; p) =
∫
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where q is the position vector, p the vector of the conjugate momenta, k = 2	=� and ∗ indicates
complex conjugate. The superscript T indicates transpose. In the present work, we will be using
quasi-homogeneous light, in which case the WDF can be de3ned as [4,7]

W (q; p) = i(q) Hs(p); (3)

where i(q) is a nonnegative function which we call the intensity and Hs(p) is the Fourier transform
of the positional power spectrum s(q) and is nonnegative.

If the position coordinates are x; y; z and the ray direction cosines are u; v; w, the position and
conjugate momenta vectors are given by

q=
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)
; (4)
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; (5)

where n is the refractive index of the optical medium.
We will assume that the optical system is characterized by a transfer map between the initial

phase space coordinates, qi; pi and the 3nal ones qf ; pf . If M represents the transfer map,(
qf

pf

)
=M

(
qi

pi

)
: (6)

We will also write expressions like qf =Mqi or xf =Mxi to represent the dependencies of each of
the 3nal coordinates on the original ones.

The transfer map can always be inverted; a simple physical argument is su?cient to prove it:
The transfer map is the relationship between the ray coordinates on the input plane (pi; qi) and the
corresponding coordinates on the output plane (pf ; qf ); if two rays share the same coordinates on
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the output plane they are the same ray and so it is always possible to map the output onto the
input. This type of reasoning is valid within the scope of geometrical optics, which corresponds to
the conditions for existence of a transfer map.

Having established that the map can be inverted the WDF transformation is governed by the
equation

W f (qf ; pf ) = h(qf ; pf )W i(M−1qf ; M−1pf ); (7)

where the factor |h(qf ; pf )| accounts for the energy conservation between input and output and is
the ratio between the elementary hypervolume in input phase space and the corresponding mapped
hypervolume in output phase space

|h(qf ; pf |=
∣∣∣∣∣
(
ni

nf

)2
dxidyiduidvi

dxfdyfdufdvf

∣∣∣∣∣ : (8)

If J is the Jacobian of the map transformation we can write [18]

|h(qf ; pf )|= 1
|J| : (9)

Eq. (7) is of special interest when the transfer map can be expressed in closed form which is
the case if matrices are used [1,13,15]. In this situation, the output coordinated are expressed as
polynomials in the input coordinates or vice versa. Almeida [1] showed that this method can be
extended to any desired degree of approximation, at least for centered systems, and published the
coe?cients for the seventh-order matrices of systems based on spherical surfaces.

There are two methods of map inversion in matrix optics. The 3rst one is a straightforward matrix
inversion and can be used in many cases; the second one, applicable in all circumstances, consists in
reversing the optical system and recalculating all the matrix coe?cients. We can thus 3nd M; M−1

and J for any centered optical system, no matter how complex. There remains a question about the
aperture stops which is dealt with below.

In order to model a system with matrices we start by de3ning a generalized ray of complex
coordinates Qi = xi + jyi and Pi = n(ui + jvi); this ray is described by the 40-element monomials
vector Qi&, built according to the rules explained by Kondo et al. [13] and Almeida [1]. If the ray
is subjected to a transformation described by Matrix M, then the output ray has coordinates (Qf ; Pf )
and is represented by the monomials vector Qf&, such that

Qf& =MQi&: (10)

For an axis symmetric optical system, in the seventh-order, matrix M will result from a product
of 40 × 40 square matrices with real elements. Each matrix in the product describe a speci3c ray
transformation. The elementary transformations can be classi3ed into four di7erent categories.
Translation: A straight ray path.
Surface refraction: Change in ray orientation governed by Snell’s law.
Forward o7set: Ray path between the surface vertex plane and the surface.
Reverse o7set: Ray path from the surface back to the vertex plane, along the refracted direction.
The ray itself is described by a 40-element vector comprising the monomials of the complex

position and conjugate momenta coordinates that have nonzero coe?cients; the 3rst two elements of
this vector are just the complex coordinates (Q; P).
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Considering Eq. (10) mapping equation (6) takes the form

Qf = PQ(Qi; Qi∗; Pi; Pi∗); (11)

Pf = PP(Qi; Qi∗; Pi; Pi∗); (12)

Qi = P−1
Q (Qf ; Qf∗; Pf ; Pf∗); (13)

Pi = P−1
P (Qf ; Qf∗; Pf ; Pf∗): (14)

The symbol PQ;PP;P−1
Q ;P

−1
P mean polynomial expressions of the variables in parentheses. Eqs. (13)

and (14) can now be used to evaluate Eq. (9) 3rst and then Eq. (7).

3. Stops and pupils

Any system analysis is incomplete without consideration of the e7ect of the various stops along
the optical path; this analysis cannot be incorporated in the matrix description and deserves special
treatment. Paraxial theory tells us [9] that we can 3nd one most limiting stop whose images in
object and image space are known by entrance and exit pupils, respectively. The theory goes that
the entrance pupil establishes the width of the beam entering the system while the 3eld angle is
established by the second most limiting stop imaged onto object space; the images of the same stop
in image space set corresponding limits to the rays leaving the system. It is not necessary to leave
theory to 3nd that these concepts are insu?cient for the complete description of the beam constraints
within the system and we are led to the concept of vignetting.

Moving from the paraxial approximation to high order the problem increases in complexity and
even the concepts of entrance and exit pupil lose signi3cance in view of the high aberrations present
when an internal stop is imaged to either object or image space [2]. Ray tracing software usually
avoids the problem by imposing restrictions as the rays cross each stop’s plane [17].

In order to tackle the problem in phase space, we will de3ne scene as an optical 3eld distribution
that spans −∞¡ |q|¡+∞ in space coordinates and −n¡ |p|¡n in conjugate momenta. A scene
cannot contain components with |p|¿ n because these components originate evanescent waves that
are considered faded out [3,12]. What the paraxial theory says is that the entrance pupil clips
the scene in p coordinates, while the second most limiting stop is responsible for clipping in q
coordinates. If only the meridional plane is considered, to reduce the dimensions to 2, the stops
create a parallelogram area in phase space, with two sides parallel to the p-axis, where the WDF
is nonzero. Vignetting must be seen as a departure from that form, meaning that, for the extreme
values of q, the angular spread of the rays may be di7erent from the central one.

In order to understand the stop e7ects on the WDF we consider it a modulator, in which case the
following relation applies [8]:

W f (q; p) =
k2

4	2

∫
Wm(q; p− p′)W i(q; p′) dp′; (15)
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where Wm(q; p) is the WDF of the modulating function m(q). Eq. (15) represents a two-dimensional
convolution of the Wigner distribution functions Wm(q; p) and W i(q; p) with respect to the frequency
variables and a mere multiplication with respect to the space variables.

A stop is a special kind of modulator. In coherent illumination, the stop has a modulating function
that equals unity within the stop area and is zero elsewhere. Furthermore, as we are usually dealing
with stops that are very large compared to the wavelength, Eq. (15) results in clipping of the local
WDF in the space domain:

W f (q; p) =W i(q; p) within the stop;

W f (q; p) = 0 elsewhere: (16)

In incoherent illumination, the stop modulating function is the auto-correlation function of the stop
transmittance function [9,12]. If as before the stop dimensions are large compared to the wavelength,
Eq. (15) can be written

W f (q; p) =W i(q; p)S(q) within the stop;

W f (q; p) = 0 elsewhere: (17)

The stop auto-correlation function is de3ned by

S(q) =
∫

|S(q+ q′)S(q)| dq′: (18)

The translation of the stop modulation onto an equivalent e7ect of the original scene’s WDF depends
on the sort of transformations the latter has incurred up to that point. When the signal encounters the
3rst stop in the system the only transformation that the WDF has su7ered is a spatial shearing which
is linear in the paraxial approximation and nonlinear if wide angles are considered [3]. If the distance
from the scene to the stop is large the angle subtended by the stop will be virtually independent from
the position coordinates on the scene and the stop e7ect will be virtually equivalent to a clipping or
modulation on the spatial frequency domain. This is what an entrance pupil is supposed to do and
so we state that an entrance pupil is a concept valid in the paraxial approximation, when the scene
is very far from the optical system.

The e7ect of further stops along the system is more di?cult to understand. Let us assume that
we are dealing with small angles, such that paraxial approximation is indeed applicable, that we
have converted the existing stops to their equivalents in object space and let us consider just the
two most signi3cant ones. The problem has been reduced to free-space propagation, characterized
by linear shearing of the WDF.

Fig. 1 illustrates the situation described above; object point P1 is an axis point and obviously stop
S2 is the entrance pupil, responsible for the limitation on the rays that enter the system. According to
general practice, we would de3ne the 3eld limits as the points on the rays that pass on the edges of
the stop S1 and the center of the entrance pupil; point P2 is one such point. Naturally, stop S1 also
introduces limitations on the rays that enter the system, besides its prime function as 3eld limiter;
this e7ect is known as vignetting.

The e7ect in phase space is illustrated in Fig. 2 where a similar situation is depicted. Fig. 2(a)
shows the e7ect of the entrance pupil on the local WDF with a clipping to its own width. The 3eld
pupil, stop S1, produces its clipping on the WDF back-propagated from the entrance pupil, as shown
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Fig. 1. The e7ect of stops on propagation angles. S2 is the entrance pupil and object point P2 is on the edge of the 3eld.

Fig. 2. E7ects of stops in phase space: (a) clipping at the entrance pupil, (b) the WDF is back propagated from the
entrance pupil to the 3eld pupil and clipped, (c) back-propagation to the scene plane.

in Fig. 2(b), and the resulting double-clipped WDF is back propagated to the scene plane, as shown
in Fig. 2(c). The resulting parallelogram shape is the representation in phase space of the signal that
can, in fact enter the system; it is clear that for a point on the axis, q=0, the stop S2 is responsible
for determining the admittance angle, while stop S1 is, to a great extent, responsible for determining
the dominion of q which is exactly what we call 3eld. The vignetting e7ect is visible for extreme
values of q, for which stop S2 no longer determines completely the admittance angle.

The extension of the above procedures to a general mapping situation, outside the paraxial ap-
proximation, must be done carefully. In the next section, we study a complete mapping situation,
illustrating both the WDF transformations and stop considerations.
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4. Example

The case below was chosen not for its particular applicability but for its ability to demonstrate
and highlight the possibilities opened by the matrix mapping and WDF used together.

We will consider a simple imaging system composed of a single convex lens and a 3eld stop
on the image plane. The lens was chosen to produce a high degree of aberrations, so that the
nonlinear e7ects are clearly visible. The lens is plano-convex, with the Pat surface facing the image
plane, and has a refractive index of 1.56; the convex surface has a radius of 6:5× 10−2 m and the
central thickness is 2:0× 10−2 m. The lens and 3eld stop diameters will be decided later on, upon
examination of the aberrations present in the image.

Eqs. (11)–(14) were established for the system in consideration using Mathematica [16]. The same
software package was also used for all the further calculations. The analysis was carried out on a
meridional plane, so the detection of aberration e7ects such as astigmatism is out of the question.
The input scene was de3ned according to Eq. (3) in terms of its WDF as

W i(q; p) = 1 + sin
4	q
l
; (19)

where l is a parameter used to control the detail on the scene; all the graphics plotted with l= 5×
10−2 m.
The input scene was located at 13:7 × 10−2 m, so that the image was formed at 5 × 10−2 m.

Fig. 3 shows the input scene in phase space and the output WDF. The input appears as a series of
light and dark bands, showing the independence of the corresponding WDF on the p coordinate,
characteristic of spatially incoherent light, a special case of quasi-homogeneous light [4,7]. The
output shows the same bands, reduced in width due to a magni3cation factor lower than unity and
distorted by aberrations. A qualitative analysis of the aberrations is indeed interesting.

The S-shape of the bands results from spherical aberration of various orders, with predominance
of the third order. The reduced width of the band for higher values of q is characteristic of bar-
rel distortion; this is high that the signal does not exist above |q|¿ 0:5, except for the spherical

Fig. 3. Transformation of the Wigner distribution function through a lens: (a) input distribution, (b) output distribution.
Both 3gures show the clipping e7ect of the lens diameter (dashed line) and the 3eld stop (solid line).
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Fig. 4. The Wigner distribution function on the image plane shows the e7ect of the stops. With incoherent illumination
the stops do not clip the distribution but apply a smoothing from the center of the stop to twice the stop width.

aberration. This is similar to a 3sh-eye objective. Field curvature is clearly visible as tilting of the
central portion of the bands for high |q|. Coma results in an asymmetry of the S-shape.

Clearly, we have performed a mapping with an in3nite diameter lens which only works mathemat-
ically. Considering the radius and width of the curved surface, we have established a lens diameter
of 4× 10−2 m. The lens diameter was given to a stop located on the vertex plane and the edges of
this stop were mapped forward, through the lens and free space, to the image plane, and backward
to the input scene plane. The maps of the lens diameter stop are superimposed on the corresponding
WDFs as dashed lines. We decided to use a 3eld stop on the image plane, in order to limit the
image to an area of low aberration; a diameter of 4 × 10−2 m was also chosen for this stop. The
3eld stop was mapped onto the input scene plane and is shown as a solid line superimposed on both
3gures. If we were dealing with coherent light, the area of both WDFs common to the zones de3ned
by the two stops would be the area relevant for the image formation; in fact, to put it correctly, the
image WDF should have been made equal to zero outside that area.

For a one-dimensional stop Eq. (18) becomes [12]

S(q) = 1− |q|
2d

→ |q|6 2d;

S(q) = 0 → |q|¿ 2d

where d is the half-width of the stop. So, in incoherent illumination, rather than clipping the local
WDF, the stop produces a gradual transition from full intensity to zero with twice the width of the
stop. When propagated to either the image or the object planes this transition manifests itself as a
gradual transition of the WDF from the full mapped value to zero guided but not delimited by the
stops’ traces, see Fig. 4.
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5. System analysis

Although not presented in this paper, it would be possible to extract a lot of information about
the system from the image WDF modulated by the stops. The 3eld distribution would be obtainable
directly from an integration of the image WDF in the variable p; the integration limits would be
established by maps twice the width of the real stops. It is clear that, within the region delimited
by the 3eld stop, there is a reasonable reproduction of the original scene.

The point spread function for an input point q0 could be evaluated considering a di7erent input
scene, such as W i(q; p) = �(q − q0), and again integrating the output WDF in p. The MTF could
also be evaluated using the same scene but performing the integration in q.

6. Conclusions

The authors presented a method to evaluate the WDF transformations of an optical signal that
passes through a system, in the context of geometric optics. Using matrices it is possible to model
centered systems up to any desired order of approximation; the authors have shown that the same
matrix method can be used for the evaluation of the WDF transformations.

The e7ect of stops and lens diameter could also be accounted for leading to the de3nition of
clipping traces on both the input and output WDF and to the outline of methods to evaluate the
resulting 3eld distribution, point spread function and MTF. In studying optical aberrations, the algebra
can get quite complicated. Matrix methods when extended to nonlinear (i.e., departures from Gaussian
optics) regime result in large matrices. For example, if one were to go up to the 3fth order, the size
of the matrices are of the dimensions of 125×125 for any arbitrary surface. The size of the matrices
can be reduced by the use of symmetries. On the other hand, a generalized operator technique, such
as that given by Dragt et al. [11] 1 and described in detail elsewhere [14] would provide an extension
of the matrix method. The fundamental idea is to 3nd the Hamiltonian equations of motion for light
rays. If this is known, then it is possible to use the standard methods of Lie algebras to describe
light optics in terms of symplectic maps. This method of analysis combined with the appropriate
Wigner distribution transformations will be the subject of future research.
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