5,530 research outputs found
Maximally extended, explicit and regular coverings of the Schwarzschild - de Sitter vacua in arbitrary dimension
Maximally extended, explicit and regular coverings of the Schwarzschild - de
Sitter family of vacua are given, first in spacetime (generalizing a result due
to Israel) and then for all dimensions (assuming a sphere). It is
shown that these coordinates offer important advantages over the well known
Kruskal - Szekeres procedure.Comment: 12 pages revtex4 5 figures in color. Higher resolution version at
http://www.astro.queensu.ca/~lake/regularcoordinates.pd
Some notes on the Kruskal - Szekeres completion
The Kruskal - Szekeres (KS) completion of the Schwarzschild spacetime is open
to Synge's methodological criticism that the KS procedure generates "good"
coordinates from "bad". This is addressed here in two ways: First I generate
the KS coordinates from Israel coordinates, which are also "good", and then I
generate the KS coordinates directly from a streamlined integration of the
Einstein equations.Comment: One typo correcte
Testing the LCDM model (and more) with the time evolution of the redshift
With the many ambitious proposals afoot for new generations of very large
telescopes, along with spectrographs of unprecedented resolution, there arises
the real possibility that the time evolution of the cosmological redshift may,
in the not too distant future, prove to be a useful tool rather than merely a
theoretical curiosity. Here I contrast this approach with the standard
cosmological procedure based on the luminosity (or any other well-defined)
distance. I then show that such observations would not only provide a direct
measure of all the associated cosmological parameters of the LCDM model, but
would also provide wide-ranging internal consistency checks. Further, in a more
general context, I show that without introducing further time derivatives of
the redshift one could in fact map out the dark energy equation of state should
the LCDM model fail. A consideration of brane-world scenarios and interacting
dark energy models serves to emphasize the fact that the usefulness of such
observations would not be restricted to high redshifts.Comment: In final form as to appear in Physical Review D. 12 pages 6 figure
Role-playing in the elementary school
Thesis (Ed. M.)--Boston University, 1963.
Includes bibliographical references (leaves 73-74
Globular Cluster Formation in the Virgo Cluster
Metal poor globular clusters (MPGCs) are a unique probe of the early
universe, in particular the reionization era. Systems of globular clusters in
galaxy clusters are particularly interesting as it is in the progenitors of
galaxy clusters that the earliest reionizing sources first formed. Although the
exact physical origin of globular clusters is still debated, it is generally
admitted that globular clusters form in early, rare dark matter peaks (Moore et
al. 2006; Boley et al. 2009). We provide a fully numerical analysis of the
Virgo cluster globular cluster system by identifying the present day globular
cluster system with exactly such early, rare dark matter peaks. A popular
hypothesis is that that the observed truncation of blue metal poor globular
cluster formation is due to reionization (Spitler et al. 2012; Boley et al.
2009; Brodie & Strader 2006); adopting this view, constraining the formation
epoch of MPGCs provides a complementary constraint on the epoch of
reionization. By analyzing both the line of sight velocity dispersion and the
surface density distribution of the present day distribution we are able to
constrain the redshift and mass of the dark matter peaks. We find and quantify
a dependence on the chosen line of sight of these quantities, whose strength
varies with redshift, and coupled with star formation efficiency arguments find
a best fitting formation mass and redshift of and . We predict intracluster MPGCs in
the Virgo cluster. Our results confirm the techniques pioneered by Moore et al.
(2006) when applied to the the Virgo cluster and extend and refine the analytic
results of Spitler et al. (2012) numerically.Comment: 13 Pages, 13 Figures, submitted to MNRA
The effect of radiation on the long term productivity of a plant based CELSS
Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS
Signatures of the Milky Way's Dark Disk in Current and Future Experiments
In hierarchical structure formation models of disk galaxies, a dark matter
disk forms as massive satellites are preferentially dragged into the disk-plane
where they dissolve. Here, we quantify the importance of this dark disk for
direct and indirect dark matter detection. The low velocity of the dark disk
with respect to the Earth enhances detection rates in direct detection
experiments at low recoil energy. For WIMP masses M_{WIMP} >~ 50 GeV, the
detection rate increases by up to a factor of 3 in the 5 - 20 keV recoil energy
range. Comparing this with rates at higher energy is sensitive to M_{WIMP},
providing stronger mass constraints particularly for M_{WIMP}>~100 GeV. The
annual modulation signal is significantly boosted by the dark disk and the
modulation phase is shifted by ~3 weeks relative to the dark halo. The
variation of the observed phase with recoil energy determines M_{WIMP}, once
the dark disk properties are fixed by future astronomical surveys. The low
velocity of the particles in the dark disk with respect to the solar system
significantly enhances the capture rate of WIMPs in the Sun, leading to an
increased flux of neutrinos from the Sun which could be detected in current and
future neutrino telescopes. The dark disk contribution to the muon flux from
neutrino back conversion at the Earth is increased by a factor of ~5 compared
to the SHM, for rho_d/rho_h=0.5.Comment: 5 pages, 7 figures, To appear in the proceedings of Identification of
Dark Matter 2008 (IDM2008), Stockholm, 18-22 August 2008; corrected one
referenc
Gravitational Collapse of Dust with a Cosmological Constant
The recent analysis of Markovic and Shapiro on the effect of a cosmological
constant on the evolution of a spherically symmetric homogeneous dust ball is
extended to include the inhomogeneous and degenerate cases. The histories are
shown by way of effective potential and Penrose-Carter diagrams.Comment: 2 pages, 2 figures (png), revtex. To appear in Phys. Rev.
Oscillating Fracture in Rubber
We have found an oscillating instability of fast-running cracks in thin
rubber sheets. A well-defined transition from straight to oscillating cracks
occurs as the amount of biaxial strain increases. Measurements of the amplitude
and wavelength of the oscillation near the onset of this instability indicate
that the instability is a Hopf bifurcation
- âŠ