327 research outputs found

    Derivation of the respiratory rate signal from a single lead ECG

    Get PDF
    It has been long established that respiration has an influence on heart rate, and this effect is called respiratory sinus arrhythmia. As a result, two inferences can be postulated: first respiration information can be derived from cardiac activity, and second this effect offers the potential of removing the respiration effect that suppresses cardiac information which is of clinical significance. As a result of research performed at NJIT, there is a significant amount of data on exercise and heart rate recovery, but not the associated respiration signal. The motivation of this research was to compare and implement an optimal ECG derived respiration program, develop an adaptive peak detector algorithm to process the complex respiration signal and produce a usable respiration rate waveform. Three methods for deriving respiration from a single lead ECG were identified and implemented in LabVIEW. The three methods were R wave amplitude modulation (RWA), R wave duration (RWD), and the multiplication of RWA and RWD signals. Data analysis was carried out by comparing actual paced breathed respiration signal with lead I ECG derived respiration of ten normal subjects. The data analysis suggests that RWA is the best method with a correlation of 0.95. Then an algorithm to derive a continuous respiration rate signal from actual respiration signal with a high level of accuracy was developed. As a result of this research a program has been developed which provides respiratory information of clinical significance from ordinary single lead ECG for situations in which ECG but respiration is not routinely monitored

    Influence of Copper Doping on the Performance of Optically Controlled GaAs Switches

    Get PDF
    The influence of the copper concentration in silicon-doped gallium arsenide on the photoionization and photoquenching of charge carriers was studied both experimentally and theoretically. The studies indicate that the compensation ratio (NCu/NSi) is an important parameter for the GaAs:Si:Cu switch systems with regard to the turn-on and turn-off performance. The optimum copper concentration for the use of GaAs:Si:Cu as an optically controlled closing and opening switch is determined

    Nanosecond Optical Quenching of Photoconductivity in a Bulk GaAs Switch

    Get PDF
    Persistent photoconductivity in copper-compensated, silicon-doped semi-insulating gallium arsenide with a time constant as large as 30 ”s has been excited by sub-band-gap laser radiation of photon energy greater than 1 eV. This photoconductivity has been quenched on a nanosecond time scale by laser radiation of photon energy less than 1 eV. The proven ability to turn the switch conductance on and off on command, and to scale the switch to high power could make this semiconductor material the basis of an optically controlled pulsed-power closing and opening switch

    Hyperfine structure of the ground state muonic He-3 atom

    Full text link
    On the basis of the perturbation theory in the fine structure constant α\alpha and the ratio of the electron to muon masses we calculate one-loop vacuum polarization and electron vertex corrections and the nuclear structure corrections to the hyperfine splitting of the ground state of muonic helium atom (Ό e 23He)(\mu\ e \ ^3_2He). We obtain total result for the ground state hyperfine splitting ΔΜhfs=4166.471\Delta \nu^{hfs}=4166.471 MHz which improves the previous calculation of Lakdawala and Mohr due to the account of new corrections of orders α5\alpha^5 and α6\alpha^6. The remaining difference between our theoretical result and experimental value of the hyperfine splitting lies in the range of theoretical and experimental errors and requires the subsequent investigation of higher order corrections.Comment: Talk on poster section of XXIV spectroscopy congress, 28 February-5 March 2010, Moscow-Troitsk, Russia, 21 pages, LaTeX, 8 figure

    GaAs Photoconductive Closing Switches with High Dark Resistance and Microsecond Conductivity Decay

    Get PDF
    Silicon-doped n-type gallium arsenide crystals, compensated with diffused copper, were studied with respect to their application as photoconductive, high-power closing switches. The attractive features of GaAs:Cu switches are their high dark resistivity, their efficient activation with Nd:YAG laser radiation, and their microsecond conductivity decay time constant. In the authors\u27 experiment, electric fields are high as 19 kV/cm were switched, and current densities of up to 10 kA/cm2 were conducted through a closely compensated crystal. At field strengths greater than approximately 10 kV/cm, a voltage `lock-on\u27 effect was observed

    Radiation Testing of Electronics for the CMS Endcap Muon System

    Get PDF
    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the inner-most portion of the CMS detector, with 8900 rad over ten years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment

    Spatial stochastic resonance in 1D Ising systems

    Full text link
    The 1D Ising model is analytically studied in a spatially periodic and oscillatory external magnetic field using the transfer-matrix method. For low enough magnetic field intensities the correlation between the external magnetic field and the response in magnetization presents a maximum for a given temperature. The phenomenon can be interpreted as a resonance phenomenon induced by the stochastic heatbath. This novel "spatial stochastic resonance" has a different origin from the classical stochastic resonance phenomenon.Comment: REVTex, 5 pages, 3 figure

    Universal Cellular Automata and Class 4

    Get PDF
    Wolfram has provided a qualitative classification of cellular automata(CA) rules according to which, there exits a class of CA rules (called Class 4) which exhibit complex pattern formation and long-lived dynamical activity (long transients). These properties of Class 4 CA's has led to the conjecture that Class 4 rules are Universal Turing machines i.e. they are bases for computational universality. We describe an embedding of a ``small'' universal Turing machine due to Minsky, into a cellular automaton rule-table. This produces a collection of (k=18,r=1)(k=18,r=1) cellular automata, all of which are computationally universal. However, we observe that these rules are distributed amongst the various Wolfram classes. More precisely, we show that the identification of the Wolfram class depends crucially on the set of initial conditions used to simulate the given CA. This work, among others, indicates that a description of complex systems and information dynamics may need a new framework for non-equilibrium statistical mechanics.Comment: Latex, 10 pages, 5 figures uuencode

    Laboratory biomarkers associated with COVID-19 severity and management

    Get PDF
    The heterogeneous disease course of COVID-19 is unpredictable, ranging from mild self-limiting symptoms to cytokine storms, acute respiratory distress syndrome (ARDS), multi-organ failure and death. Identification of high-risk cases will enable appropriate intervention and escalation. This study investigates the routine laboratory tests and cytokines implicated in COVID-19 for their potential application as biomarkers of disease severity, respiratory failure and need of higher-level care. From analysis of 203 samples, CRP, IL-6, IL-10 and LDH were most strongly correlated with the WHO ordinal scale of illness severity, the fraction of inspired oxygen delivery, radiological evidence of ARDS and level of respiratory support (p ≀ 0.001). IL-6 levels of ≄3.27 pg/ml provide a sensitivity of 0.87 and specificity of 0.64 for a requirement of ventilation, and a CRP of ≄37 mg/l of 0.91 and 0.66. Reliable stratification of high-risk cases has significant implications on patient triage, resource management and potentially the initiation of novel therapies in severe patients

    Hyperfine Structure of S-States in Muonic Helium Ion

    Full text link
    Corrections of orders alpha^5 and alpha^6 are calculated in the hyperfine splittings of 1S and 2S - energy levels in the ion of muonic helium. The electron vacuum polarization effects, the nuclear structure corrections and recoil corrections are taken into account. The obtained numerical values of the hyperfine splittings -1334.56 meV (1S state), -166.62 meV (2S state) can be considered as a reliable estimate for the comparison with the future experimental data. The hyperfine splitting interval Delta_{12}=(8 Delta E^{hfs}(2S)- Delta E^{hfs}(1S)) = 1.64 meV can be used for the check of quantum electrodynamics.Comment: 14 pages, 5 figure
    • 

    corecore