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ABSTRACT

DERIVATION OF THE RESPIRATORY RATE SIGNAL
FROM A SINGLE LEAD ECG

by

Murtaza M. Lakdawala

It has been long established that respiration has an influence on heart rate, and this effect

is called respiratory sinus arrhythmia. As a result, two inferences can be postulated: first

respiration information can be derived from cardiac activity, and second this effect offers

the potential of removing the respiration effect that suppresses cardiac information which

is of clinical significance. As a result of research performed at NJIT, there is a significant

amount of data on exercise and heart rate recovery, but not the associated respiration

signal. The motivation of this research was to compare and implement an optimal ECG

derived respiration program, develop an adaptive peak detector algorithm to process the

complex respiration signal and produce a usable respiration rate waveform. Three

methods for deriving respiration from a single lead ECG were identified and

implemented in LabVIEW. The three methods were R wave amplitude modulation

(RWA), R wave duration (RWD), and the multiplication of RWA and RWD signals. Data

analysis was carried out by comparing actual paced breathed respiration signal with lead I

ECG derived respiration of ten normal subjects. The data analysis suggests that RWA is

the best method with a correlation of 0.95. Then an algorithm to derive a continuous

respiration rate signal from actual respiration signal with a high level of accuracy was

developed. As a result of this research a program has been developed which provides

respiratory information of clinical significance from ordinary single lead ECG for

situations in which ECG but respiration is not routinely monitored.



DERIVATION OF THE RESPIRATORY RATE SIGNAL
FROM A SINGLE LEAD ECG

by

Murtaza M. Lakdawala

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

May 2008



APPROVAL PAGE

DERIVATION OF THE RESPIRATORY RATE SIGNAL
FROM A SINGLE LEAD ECG

Murtaza M. Lakdawala

Dr. Ronald H. Rockland, Thesis Advisor 	 Date
Professor, Engineering Technology/Biomedical Engineering, NJIT

r. Joel Schesser, Committee Member) 

Ig
i Oat&

versity Lecturer, Biomedical Engineering, NJIT

D o.1.0.7 in, Committee Member Date
Assist., t Professor, Biomedical Engineering, NJIT





BIOGRAPHICAL SKETCH

Author:	 Murtaza Mahammadali Lakdawala

Degree:	 Master of Science

Date:	 May 2008

Undergraduate and Graduate Education:

• Master of Science in Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, USA, 2008

• Bachelor of Engineering in Biomedical & Instrumentation Engineering,
C. U. Shah College of Engineering & Technology, Wadhwan City, Gujarat, India, 2006

Major:	 Biomedical Engineering



To my mummy & papa, the fountains of my inspiration

iv



ACKNOWLEDGMENT

I would like to thank Dr. Ronald Rockland for being my mentor and thesis advisor. His

vision and knowledge helped me accomplish the challenging research. I express my

sincere thanks to Dr. Joel Schesser for giving me valuable tips that helped me throughout

my research and for being in my thesis committee. I thank Dr. Mesut Sahin for

participating in my thesis committee.

I am grateful to Dr. Tara Alvarez and Dr. Sina Zaim for providing me with the

physiological data for the research.

I take this opportunity to thank all my friends here and in India, who have been

there for me in good times and bad, who instilled in me the confidence and courage to

move forward. I thank a special someone who was never around, but was always by my

side. I lovingly thank my parents and my brother Kausar for their support. Finally, I offer

my humble thanks to The Almighty, Allah.



TABLE OF CONTENTS

Chapter	 Page

1 OBJECTIVE 	 1

2 BACKGROUND RESEARCH 	  3

2.1 Electrophysiology of Heart 	 3

2.2 Physiology of Respiration  	 8

2.3 ECG Derived Respiration (EDR) 	 13

2.3.1 Initial Work in EDR at MIT, Cambridge 	 13

2.3.2 EDR by Reisman at NJIT 	 14

2.3.3 EDR at Tel Aviv University 	 16

2.4 LabVIEW — Software Tool 	 18

2.5 Physiological Data 	 19

3 IMPLEMENTATION OF ALGORITHMS FOR ECG DERIVED
RESPIRATION RATE 	 21

3.1 Algorithm for R Wave Detection 	 20

	

3.2 Methods for EDR   23

	

3.2.1 RWA   23

3.2.2 RWD 	 25

3.2.3 RWA*RWD 	  27

	

3.3 Respiration Rate Peak Extractor Algorithm   27

3.3.1 Respiration Rate Peak Detector 	 29

3.3.2 Adaptive Refractory Filter 	 30

3.3.3 Missing Peak Detector 	 31

vi



TABLE OF CONTENTS
(Continued)

Chapter	 Page

4 RESULTS 	 33

4.1 Viability of EDR Methods 	  33

4.2 Viability of Respiration Rate Algorithm 	  41

4.3 Implementing the ECG Derived Respiration Rate Program 	  45

	

5 CONCLUSION   48

	

6 FUTURE WORK   50

APPENDIX A ECG DERIVED RESPIRATION ALGORITHM CODES 	  53

APPENDIX B RESPIRATION RATE EXTRACTOR ALGORITHM CODES 	  58

APPENDIX C IBI AND RESPIRATION VS. TIME PLOTS FOR STRESS

	

SAMPLES   60

	

REFERENCES   66

V11



LIST OF TABLES

Table Page

4.1 Respiration Rates for 8 Breaths/min Paced Breathed Samples 	 36

4.2 Respiration Rates for 12 Breaths/min Paced Breathed Samples 	 37

4.3 Respiration Rates for 16 Breaths/min Paced Breathed Samples 	 38

4.4 Summary of the Mean & SD for All Samples' Respiration Rates 	 39

4.5 RMSE for 8 Breaths/min Paced Breathed Respiration Rate Samples 	 42

4.6 RMSE for 12 Breaths/min Paced Breathed Respiration Rate Samples 	 43

4.7 RMSE for 16 Breaths/min Paced Breathed Respiration Rate Samples 	 44

vi"



LIST OF FIGURES

Figure Page

2.1 Conductive system of the heart 	 4

2.2 Normal ECG waveform  5

2.3 ECG lead placement  7

2.4 Expansion and contraction of thoracic cage during expiration
and inspiration 	 8

2.5 Organization of the respiratory center 	 10

2.6 Displacement sensor for respiration measurement  11

2.7 Thermistor sensor for respiration measurement 	 11

2.8 Electrical axis measurement technique 	 14

2.9 ECG signals influenced by respiration  15

2.10 R wave duration measurement technique  17

3.1 Block diagram of R wave detector algorithm 	 21

3.2 ECG marked with QRS peaks 	 23

3.3 Actual respiration and respiration derived using RWA technique 	 25

3.4 A segment with the left and right inflection points on the ECG
derivative 	 26

3.5 A segment with the left and right inflection points on the ECG signal 	 26

3.6 Actual respiration and respiration derived using RWD technique 	 26

3.7 Actual respiration and respiration derived using RWA*RWD
technique 	 27

3.8 Respiration rate signal extractor algorithm 	 28

3.9 Peaks detected by the basic peak detector 	 30

3.10 EDR-RWA waveform with refractory filter off and on 	 31

ix



LIST OF FIGURES
(Continued)

Figure Page

3.11 EDR segment with a missed peak and after passing through missing peak
detector 	 32

4.1 EDR signals plotted against actual respiration  33

4.2 Power Spectrum of a subject's actual respiration and the three
methods of obtaining an EDR signal 	 35

4.3 Scatter plots for comparing displacement technique with EDR techniques
for obtaining respiration signal 	 40

4.4 Respiration rate signal extracted from actual and derived respiration 	 41

4.5 IBI and respiration rate plots for stress_sample_1 	 45

4.6 IBI and respiration rate plots for stress_sample_2 	 46

4.7 IBI and respiration rate plots for stress_sample_3 	 47

6.1 Stress test analysis of ECG and respiration 	 52

A.1 Front panel of EDR program 	 53

A.2 LabVIEW Block diagram of EDR algorithm 	 54

A.3 Front panel of R wave detection algorithm 	 55

A.4 LabVIEW block diagram of R wave detection algorithm 	 55

A.5 Front panel of RWA algorithm 	 56

A.6 LabVIEW block diagram of RWA algorithm 	 56

A.7 Front panel of RWD algorithm 	 57

A.8 LabVIEW block diagram of RWD algorithm 	 57

B.1 Front panel of respiration rate extractor algorithm 	 58

B.2 LabVIEW block diagram of respiration rate detector algorithm 	 58

x



LIST OF FIGURES
(Continued)

Figure	 Page

B.3	 VI Hierarchy of respiration rate extractor algorithm 	 59

B.4	 LabVIEW block diagram of missing peak detector algorithm 	 59

C.1	 IBI and respiration rate plots for stress_sample_4 	 60

C.2	 IBI and respiration rate plots for stress_sample_5 	 61

C.3	 IBI and respiration rate plots for stress_sample_6 	 62

C.4	 IBI and respiration rate plots for stress_sample_7 	 63

C.5	 IBI and respiration rate plots for stress_sample_8 	 64

C.6	 IBI and respiration rate plots for stress_sample_9 	 65

xi



CHAPTER 1

OBJECTIVE

Knowledge of respiratory patterns would be clinically useful in many situations in which

the ECG, but not respiration, is routinely monitored [1]. Respiration is the most important

modulator of heart rate, and the source of the short term heart rate variability. Analysis of

ECG with respect to respiration can give important insight into the autonomic control of

heart rate. Several methods exist to measure respiration indirectly through thoracic

movements or electrical impedance measurement [2]. Direct measurement of air flow

through the mouth and nose is considered to be the gold standard which is usually done

by temperature measurement of inhaled and expelled air.

The objective behind the implementation of ECG derived respiration is to be able

to measure respiration from an available ECG source without the use of additional

hardware, or produce a respiration signal from recordings that only contain single lead

ECGs. The respiration rate signal, derived from the respiration signal, is an important part

of heart rate variability (HRV) analysis. Being able to produce that signal from single

lead ECGs is critical for accurate HRV analysis.

The EDR method is based on small changes in ECG morphology during the

respiratory cycle caused by movement of the heart position relative to the electrodes and

the change of lung volume [3]. A number of algorithms for estimating respiration from

single and multi-lead ECGs have been reported [4], [5], [6]. Methods for deriving

respiration from a single lead ECG are identified and implemented in this thesis using

LabVIEW. The first method, called R-wave amplitude modulation (RWA), is based on

1
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the fact that respiration causes detectable change in amplitude of R waves. The second

method, called the R-wave duration (RWD), is based on the change in area under the R-

wave due to respiratory efforts. A comparison of these methods will be performed on a

set of data that contains both respiration and heart rate by analyzing the difference

between the respiration rate signal from the actual respiration signal and the derived

respiration signal.



CHAPTER 2

BACKGROUND RESEARCH

2.1 Electrophysiology of Heart

2.1.1 Conductive System of the Heart

The recording of the electrical activity of the heart is known as an electrocardiogram

(ECG). An ECG is a quasi-periodical, rhythmically repeating signal synchronized by the

function of the heart, which acts as a generator of bioelectric events. This signal can be

described by means of an electric dipole. The dipole generates a field vector which

changes periodically in time and space and its effects can be measured on the surface of

the body. The ECG waveforms have been standardized in terms of amplitude and phase

relationships and any deviation from this reflects the presence of an abnormality [7].

The heart (see Figure 2.1) has its own system of generating and conducting action

potentials through a complex change of ionic concentration across the cell membrane.

The Sino-atrial node (SA node) is the pacemaker of the heart and it is a group of cells

located in the top right atrium near the entry of the vena cava that excite the muscles of

the heart [8]. The SA node generates impulses at a normal rate of about 72 beats per

minute. As the body acts as a resistive medium, these impulses propagate through the

conductive cells to other parts of the heart. The excitation wave travels through the right

and left atria at a velocity of about 1m/s and about 0.1s is required to complete the atrial

excitation. This action potential contracts the atrial muscle and travels to the Atrio-

ventricular node (AV node) located in the lower part of the wall between the two atria in

about 0.04s. A fibrous barrier of non-excitable cells called the Purkinje fibers in the AV

3



4

node delays the spread of potential for about 0.11s [9]. The potential is then carried to the

ventricles by a special conduction system called the bundle of His. Thus, the AV node

and bundle of His functionally connects the atria and ventricles. The AV node delay

ensures that the atria complete their contraction before ventricular contraction takes place.

Also, the Purkinje fibers split into two branches to simultaneously excite the two

ventricles. Conduction velocity of the action potentials in Purkinje fibers is about 1.5 to

2.5 m/s. Since the direction of the impulse propagating in the bundle of His is from the

apex of the heart, ventricular contraction starts from the apex and continues upwards

through the ventricular walls. This causes a squeezing action of the ventricles which

pumps the blood out of the ventricles into the aorta [10].

Figure 2.1 Conductive system of the heart [1 1].



5

2.1.2 The Normal Electrocardiogram

The normal electrocardiogram (shown in Figure 2.2) is composed of a P wave, a QRS

complex and a T wave. The QRS complex can be considered as three separate waves, the

Q wave, the R wave and the S wave. The P wave is caused by the electrical potentials

generated as the atria depolarize before contraction. The QRS complex is caused by the

potentials generated when the ventricles depolarize before contraction. The T wave is

caused by potentials generated as the ventricles recover from the state of depolarization.

This process occurs in the ventricular muscle 0.25 — 0.35s after depolarization and is

know as a repolarization wave. Thus, the electrocardiogram is composed of both

depolarization and repolarization waves.

R

Figure 2.2 Normal ECG waveform [12].
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2.1.3 ECG Leads

The ECG is recorded by placing an array of electrodes at specific locations on the body

surface (see Figure 2.3). Conventionally, electrodes are placed on each arm and leg, and

six electrodes are placed at different locations on the chest. There are three types of ECG

leads: standard limb leads, augmented limb leads, and chest leads. These electrode leads

are connected to a measurement device that measures the potential difference between the

electrodes to produce ECG. The limb leads are referred to as bipolar leads because the

trace corresponds to the difference of electrical potentials that exist between two

electrodes.

In standard lead I, the positive electrode is placed on the left arm and the negative

electrode on the right arm, measuring the potential difference between them. In lead II,

the positive electrode is placed on the left leg and negative electrode on the right arm. In

lead III, the positive electrode is placed on the left leg and the negative electrode on the

left arm. In all lead configurations, the difference of potential measured between two

electrodes is always with reference to a third electrode which is placed on the right leg. In

defining the bipolar leads, Einthoven postulated that at any given time of the cardiac

cycle, the electrical axis of the heart can be represented as a two dimensional vector. The

ECG measured from any of the three standard leads is a time-variant single dimensional

component of the vector. He proposed that the electric field of the heart could be

represented diagrammatically as a triangle, with the heart located at the centre. It was

shown that the instantaneous voltage measured from any of the three limb leads is

approximately equal to the algebraic sum of the other two.
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There are three augmented limb leads. Each of these leads has a single positive

electrode which is referenced against a grouping of two other limb electrodes. In the aV R

lead, the right arm is recorded with respect to a reference of a combination of the left arm

and left leg electrodes. In the aV L lead, the left arm is recorded with respect to a reference

of a combination of right arm and left leg electrodes. In the aV F lead, the left leg is

recorded with respect to a reference of a combination of the two arm electrodes.

The chest leads are unipolar leads. These six positive electrodes are placed on the

surface of the chest where heart is located to record electrical activity in a horizontal

arrangement. The six leads are named as V i to V6. These leads are arranged from right of

the sternum over the fourth intercostal space laterally towards the left ventricular wall

[13].

Figure 2.3 ECG lead placement [14].
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2.2 Physiology of Respiration

2.2.1 Pulmonary Ventilation

The goal of respiration is to provide oxygen to the tissues and to remove carbon dioxide.

Pulmonary ventilation is the phenomena by which the inflow and outflow of air takes

place between the atmosphere and the lung alveoli (Figure 2.1.1). Pulmonary ventilation

is caused by the muscles of the thorax and diaphragm by creating negative and positive

pressures for inspiration and expiration respectively. The lungs can be expanded and

contracted in two ways: by increasing and decreasing the chest cavity by downward and

upward movement of the diaphragm and by elevation and depression of the ribs to

change the volume of the chest cavity [15].

Figure 2.4 Expansion and contraction of thoracic cage during expiration and inspiration
[16].
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Normal quiet breathing can be carried out completely by the first method i.e., by

moving the diaphragm. The contraction of diaphragm pulls the lower part of the lungs

downward during inspiration and the relaxation of diaphragm, recoil of the lungs, chest

wall and abdominal structures compresses the lungs during expiration. During physical

activity when heavy breathing is required the recoiling forces are not sufficient to carry

out rapid expiration so extra force is provided by the contraction of abdominal muscles.

Another method for expanding the lungs is to raise the rib cage. This causes lungs to

expand. Therefore, the muscles that help the lungs to expand by elevating the rib cage are

categorized as muscles of inspiration and the muscles that depress the rib cage are

categorized as the muscles of expiration [15].

2.2.2 Respiratory Center

The nervous system automatically adjusts the rate of ventilation to meet the demands of

the body so that the arterial blood oxygen pressure and carbon dioxide pressure is not

altered even during moderate to heavy exercises. The respiratory center is located

bilaterally in the medulla oblongata and pons. It is divided into three major regions of

neurons: (1) a dorsal respiratory group, which is located in the dorsal portion of the

medulla. It mainly controls inspiration. (2) A ventral respiratory group is located in the

ventro-lateral part of the medulla. It can cause inspiration or expiration depending on

which neurons are excited. (3) The pneumotaxic center is located dorsally in the superior

portion of the pons. It helps control the respiration rate and pattern of breathing [15].
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Figure 2.5 Organization of the respiratory center [15].

2.2.3 Measurement of Respiration Rate

Under normal circumstances respiration is a rhythmic action, so respiration rate provides

clinical information of diagnostic value about the respiratory, efforts. Several techniques

have been implemented for the measurement of respiration rate.

2.2.3.1 Displacement Method. The respiratory cycle is accompanied by changes in

thoracic volume. These changes can be detected by means of a displacement sensor that

uses a strain gauge. The sensor is enclosed by an elastic band which is tied around the

waist. Respiratory .efforts result in resistance changes of the strain gauge connected to an

arm of a Wheatstone bridge [10].
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Figure 2.6 Displacement sensor for respiration measurement [17].

2.2.3.2 Thermistor Method. 	 Air is warmed when it passes through the lungs and the

respiratory tract. This difference in temperature between the inspired and expired air can

be detected by a thermistor placed in front of the nostrils by a proper arrangement [18].

Figure 2.7 Thermistor sensor for respiration measurement [19].
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2.2.3.3 Impedance Pneumography. This is an indirect method for measuring

respiration. External electrodes are applied on the thorax to measure respiration rate using

the relation between respiratory depth and thoracic impedance change. It does not require

placement of any sensor near the nose and offers minimal hindrance to the patient. This

technique uses a high frequency current through the electrodes and detecting the

modulated signal. The signal is modulated by the changes in thoracic impedance due to

respiratory efforts [18].
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2.3 ECG Derived Respiration

2.3.1 Initial Work in ECG Derived Respiration (EDR) at MIT, Cambridge

Moody and his colleagues at MIT Cambridge published a paper in 1985 [1] describing a

technique for deriving respiration signal from multi lead ECG. The main advantage of

this signal processing technique is that no additional hardware or sensors are required for

implementing it. They compared the technique with conventional respiration

measurement techniques and showed the derived respiration can be used for consistent

detection of central, mixed and obstructive apneas. Additionally, they went on to show

that the technique can confidently recognize central and mixed apnea, hypo-apnea, and

tachy-apnea.

Their technique was based on the fact that the respiration induces an apparent

modulation in the direction of the mean cardiac electrical axis. This is because electrode

motion artifact with respect to the position of the heart influences the standard ECG

obtained from the body and thereby the electrical impedance of the thorax. For

demonstrating the changes in electrical axis due to respiration, they measured the area of

QRS complex in two orthogonal leads over a fixed time window which as shown in

Figure 2.8 are Ax and Ay . Since the window width is fixed, the area is proportional to the

amplitude of the ECG signal, hence to the projection of the mean cardiac electrical vector

on the lead axis. When the leads are orthogonal, the arctangent of the ratio of the QRS

areas measured in the two leads results in the angle (0) of the mean axis with respect to

one of the lead axes. Then the angle values were interpolated to produce a continuous

ECG-derived respiratory signal.
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They also suggested that a single lead could be used for deriving respiration

signal. Using a single lead ECG, QRS area measurements from that lead can still be used

to approximate the respiratory signal and measure respiratory rate. The single lead EDR

can produce a relatively large signal, if the lead axis is considerably different from the

mean electrical axis. The greatest signal-to-noise ratio is normally obtained when the lead

axis is orthogonal to the mean electrical axis, as noise does not change in proportion to

the amplitude of the signal.

Figure 2.8 Electrical axis measurement technique [1].

2.3.2 EDR by Reisman at NJIT

Based on the electrical axis detection technique, many studies were conducted to

implement EDR in different applications. Reisman and his colleagues at NJIT [20] used

this multi-lead technique for heart rate variability studies. Their study shows that during

inhalation and hold, the amplitude of lead I decreases and that of lead III increases

appreciably, while during exhalation and hold, the amplitude of lead I increases and that
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of lead III decreases. This observation can be explained by the fact that during inhalation,

the lungs are filled with air and diaphragm moves inferiorly, as result of which the apex

of the heart is stretches towards the abdomen, while during exhalation the lungs are

emptied and diaphragm moves superiorly, which causes the apex of the heart to be

compressed towards the chest. This clearly indicates that the respiration causes detectable

change in the amplitude of the QRS complex in a single lead ECG.

Fig. 1 ECG signals influenced by respiration (a) lead
1, (b) lead III, (c) respiration wave

Figure 2.9 ECG signals influenced by respiration [20].
(a) Lead I, (b) Lead III and (c) Respiration wave

Power spectral analysis of heart rate variability is a powerful tool for assessing the

neuro-cardiac control mechanism influencing day to day life in clinical conditions.

However, in spectral analysis of heart rate variability, the most distinct peak reflects

changes in beat to beat interval that oscillates at the same frequency as respiration. Their

motivation was to determine the frequency of the spectral peak occurring at the
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respiration frequency and thereby ascertain the influence of the respiratory system in

heart rate variability (HRV) during stress testing, since it has been observed that the

power in the very high frequency band (0.4-1 Hz) has potential application in diagnosis

of coronary artery disease.

2.3.3 R Wave Duration based EDR technique for Sleep Analysis

Researchers at Tel Aviv University, Tel-Aviv, Israel derived EDR signal by measuring

the R Wave Duration (RWD) [21]. This technique is a different method for measuring the

change in QRS area which is the basis for EDR detection. The aim of this study was to

quantify the ECG Derived Respiration (EDR) in order to extend the capabilities of ECG

based sleep analysis. First they implemented an R wave detection algorithm followed by

RWD detection. An algorithm detected local extreme points of the first derivative of the

R peak called the inflection points. When a curve changes from concave to convex, a

local maximum in the first derivative is called the left inflection point, and when it

changes from convex to concave, a local minimum is called the right inflection point. R

wave duration (RWD) is defined as the time between these two inflection points adjacent

to every R wave peak. The RWD values were plotted against time to get an EDR signal

[22].
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Figure 2.10 R wave duration measurement technique for EDR [22].
(a) ECG, (b) QRS peak and (c) differential of QRS peak

The next step was to implement these single lead techniques in LabVIEW to

obtain EDR signals and compare them. To determine the accuracy of these techniques,

the derived respiration signal from each technique was compared to actual respiration

signal obtained, using displacement sensor.
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2.4 LabVIEW - Software Tool

LabVIEW is a graphical programming language. It uses a dataflow programming model

that provides an intuitive interface to build design, control, and test applications. The

graphical dataflow language and block diagram approach naturally represent the flow of

data and intuitively map user interface controls to data, so it is very easy to view and

modify data or control inputs, visualize results in graphs and charts, create custom user

interfaces and reports in text files, HTML, Microsoft Word, Microsoft Excel, and more.

One of the major advantages of LabVIEW is the relative ease with which one can

acquire analog/digital signals from sensors. These acquired signals contain information

about a physical quantity of interest. However, the information may not be available

directly from the sensors and may require further processing in order to derive useful

information. LabVIEW provides an extensive library of functions called VIs (Virtual

instruments) to perform different kinds of signal manipulation and processing. For e.g.

there are VIs for waveform measurements, waveform monitoring, waveform generation,

signal processing and mathematics. With the help of such VIs one can perform different

operations on the signal and hence derive the required information without much

difficulty [23].

Owing to the extensive signal manipulation functions available, all the algorithms

have been implemented in LabVIEW. The data analysis was performed using the

`Probability and Statistics' toolbox of LabVIEW, and the Application Builder module

was used to create the executable program, which uses the digital files containing ECG

data as an input, and creates the ECG derived respiration rate signal as the output.
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2.5 Physiological Data

The physiological data used for this research, was originally obtained for a study of

controls and apparently healthy subjects with Presbyopia by Dr. Petrock [24]. All the IRB

protocols had been followed during the study which was conducted at the Laboratory for

Visual Processes in the Department of Biomedical Engineering at New Jersey Institute of

Technology. Continuous Respiration and Electrocardiogram (ECG) were recorded for

three different controlled breathing levels: 8 breaths/min, 12 breaths/min, and 16

breaths/min in an effort to obtain respiration rates in the low and high HRV cardiac

autonomic response ranges.

The data were collected from 10 subjects, which included presbyopic and control

human subjects. The ages of the controls ranged from 18-35. The ages of the presbyopic

group ranged from 50 — 75.

ECG and respiration were acquired using a National Instruments DAQ card that

obtained analog data from Grass bioamplifiers. The ECG was measured using passive

electrodes that were passed to the Grass-Telefactor model IP511, which is an industry

standard isolated physiological pre-amplifier. Respiration measurement was done by

placing a displacement type Grass-Telefactor respiratory effort transducer around the

subject's ribcage. The respiration measurement was obtained by recording the difference

in the microvolt amplitude signal that is generated when the piezo film is stretched or

compressed due to the exhalation or inhalation respectively.

The subject was asked to focus on a green light which blinked at frequencies of 8,

12 and 16 per minute to obtain paced breathing rates. The DAQ acquired the

physiological signals at a rate of 500 samples/sec to ensure frequency resolution.
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In addition to the paced breathed data, to demonstrate the use of the developed

technique in producing a respiration rate signal from raw ECG, few samples of stress data

that included exercise and recovery periods were obtained form Dr Zaim [25 ]. The

exercise data had been originally obtained for a study by Dr. P. Asselin at University of

Medicine and Dentistry, Medical School, Newark [26].
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CHAPTER 3

IMPLEMENTATION OF ALGORITHMS FOR
ECG DERIVED RESPIRATION RATE

3.1 Algorithm for R Wave Detection

The algorithms for deriving respiration from ECG need indices of R wave locations.

Therefore, an accurate means of detecting all the R waves is needed. ECG signals were

passed through an R wave detection algorithm [26] developed at NJIT several years ago,

using LabVIEW. The resulting array of R wave indices was used to derive the necessary

respiratory information. The figure 3.1 depicts the block diagram of the R wave detection

algorithm.

Figure 3.1 Block diagram of R wave detector algorithm.

The raw ECG is first passed through a Butterworth bandpass filter with a higher

cutoff frequency of 40Hz and a lower cutoff frequency of 0.5Hz. The higher cutoff

frequency removes unwanted high frequencies that may be present due to muscle activity

21
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and the lower cutoff frequency ensures stability of baseline. The filtered signal is passed

through a series of subroutines which detect the indices of QRS peaks in the signal. Since

peaks are features of the waveform which have high slopes, the first derivative is

calculated and then squared to remove negative values. As a result of derivative function

the peaks are enhanced. However, this process also enhances the high frequency noise.

For removing the unwanted noise peaks which may have been detected as an R wave

peak, the signal is passed through an outlier clipper. This filter clips away all very high

amplitude noise peaks. The derivative squared limited signal is then passed through a

simple peak detector, where the amplitude of each point is compared to the threshold of

30% of maximum valued point in the segment. The resulting array gives indices of peaks

from the filtered derivative squared limited ECG signal.

The ECG is a complex signal consisting of various features which requires the

peak detector to make special considerations for locating the peaks. The T wave which

immediately follows the R wave also has a prominent peak which is likely to be detected

as a QRS peak. A refractory filter is added to remove any peak which falls within a

refractory period of 200ms after a QRS peak has been detected. Thus obtained are indices

of peaks in the derivative squared ECG, which can be used to locate the peaks in the

actual filtered ECG. The peak finder block finds maximum value from the filtered ECG

within a period of +/-60ms of maximum derivative point regardless of sampling rate.

This strategy is based on the width of R wave, as the maximum is before R wave or

between the R and the S waves. The peak finder generates an array of indices of QRS

peaks in actual ECG.
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The robustness of the R wave detection algorithm can be observed in the noisy

segment of ECG shown in Figure 3.2.

Figure 3.2 ECG marked with QRS peaks.

3.2 Methods for EDR

Based on researching different EDR detection techniques, two promising methods were

studied in order to find the better method for deriving respiratory information from a

single lead ECG. Also a third method was developed to take advantage of respiration

features from both the methods. The three methods studied are:

1. R wave amplitude modulation technique (RWA)

2. R wave duration measurement technique (RWD)

3. Product of RWA and RWD

3.2.1 RWA

The array of indices of QRS peaks generated by the R wave detection algorithm from the

given ECG waveform can be used for obtaining respiration information. Lead I ECG

signals were used for the study. As shown by Reisman [210], during inhalation and hold,

the amplitude of lead I decreases, while during exhalation and hold, the amplitude of lead
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I increases. R waves being the high amplitude features of the ECG experience maximum

modulation by the respiratory efforts. The peaks of R waves, i.e., QRS peaks depict the

change in amplitude caused by respiration. Thus the R wave amplitude modulation effect

can be used to obtain ECG derived respiration (EDR).

The modulating signal was obtained by using the indices of QRS peaks to obtain

the amplitude of those peaks. The peak amplitudes thus obtained represent the

modulating signal, which is the respiration signal. However, the peaks form a

discontinuous signal which is not a proper representation of the respiration signal. To

obtain a continuous time sampled waveform, the peak array was passed through a spline

interpolator which inserted points between the unevenly distributed peaks to obtain a

continuous time varying waveform.

During data acquisition actual respiration signals were obtained by Dr. Petrock

[24] using a displacement sensor simultaneously with the ECG. Therefore, the

effectiveness of EDR algorithm and the resulting respiration signal could be compared

with the actual respiration signal from the same patient (see Figure 3.3). The two

waveforms, derived (red trace) and actual (white trace), appear to be similar, and

subsequent analysis will determine the similarity. Note that the goal of developing the

EDR signal is not to reproduce an exact respiration signal, but rather to produce an

accurate measure of the respiration rate.
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Figure 3.3 Actual respiration and respiration derived using RWA technique.

3.2.2 RWD

Respiration causes a change in the area under the R wave and this is the basis of using R

wave duration measurement for EDR detection [21]. As discussed in the literature search

section 2.3.3 the RWD finds the difference between local inflection points. To measure R

wave duration, the index of the R wave was used to pass a 40 ,Ms window of ECG

derivative signal within +/-20ms of the QRS peak. The local Maximum in the first

derivative called the left inflection point is a peak and obtained by passing the segment

through a peak detector. The local minimum in the first derivative called the right

inflection point is a valley and obtained by passing the segment through a valley detector.

The local maxima and minima are shown in Figure 14. The difference between the

indices of the left and right inflection points gives R wave duration. The R wave

durations (RWDs) represent the QRS area (see Figure 3.5) which has been modulated by

the respiratory efforts. These time difference values when plotted against R wave indices

produce a respiration signal. A comparison of the actual (white trace) and derived RWD

(red trace) is shown in Figure 3.6.



Figure 3.4 A segment with the left and right inflection points on the ECG derivative
signal.

Figure 3.5 A segment with the left and right inflection points on the ECG signal.

Figure 3.6 Actual respiration and respiration derived using RWD technique.
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3.2.3 RWA*RWD

A third method is implemented to combine the respiration information from both the

RWA and RWD methods. Point by point product of respiration derived using RWA and

RWD methods was calculated to obtain a respiration signal. Figure 3.7 shows the derived

respiration signal using this method. The waveform is a modulation of the RWA derived

respiration signal by RWD derived respiration. Data analysis will reveal the advantage of

this method over another method.

Figure 3.7 Actual respiration and respiration derived using RWA*RWD technique.

3.3 Respiration Rate Signal Extractor Algorithm

In order to validate the effectiveness of the three methods for EDR the derived signal was

compared with the actual respiration signal, which was acquired simultaneously with

ECG during data acquisition. Data analysis (Section 4.1) revealed that RWA is a superior

technique for deriving respiration from single lead ECG and exhibits a high correlation

with actual respiration signal. Once respiration signals from both actual and derived

methods were available, the goal was to develop an algorithm for obtaining a continuous

respiration rate signal. Respiration rate signals can thus be obtained and compared.
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A point by point continuous respiratory rate signal can be obtaining by detecting

the peaks in the respiration signal. Time between two peaks gives the time period T and

1/T gives the frequency f, of the signal at every peak of the signal. Figure 3.8 depicts the

algorithm used in calculating the respiration rate signal for the derived respiration signal.

The algorithm consists of a bandpass filter, a two-stage peak detector, a refractory filter

to remove unwanted peaks, a peak detector to insert missed peaks, and a spline

interpolator to construct the continuous respiratory rate signal.

Adaptive
Refractory

Filter

Indices without
false peaks

.1
Find Time
Period (T)

Spline
Interpolator

RR______÷
Signal

--.---11

Figure 3.8 Respiration rate signal extractor algorithm.
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3.3.1 Bandpass Filter and Respiration Rate Peak Detector

The normal respiration rate ranges from about a few breaths/min to 35 breaths/min. This

means that the respiration signal lies in a band of 0.1 to 0.6Hz. A Butterworth bandpass

filter with the indicated range is used to filter out the unwanted low and high frequency

components of ECG, which are still present in the EDR signal. Cyclical variations

existing in the respiration waveform can be detected to measure the respiration rate.

However, cyclical variations in the respiration waveform can also be caused by the

beating of the heart. These unwanted variations called heart-bumps are difficult to detect

and often can be mistaken for respiration features. Franks et al. [27] developed an

algorithm for removing heart-bumps. An adaptation of this algorithm is used for

removing such features from EDR waveforms.

After passing through the bandpass filter, the respiration waveform is processed

by a basic peak detector that detects all the peaks. The detected peaks may be due to the

respiratory efforts or due to the heart. As shown in Figure 3.9, the respiration rate peak

detector algorithm detects both peaks and troughs. A trough is declared between two

peaks if, 1) the amplitude of the negative going portion of the segment (i.e., amplitude

difference between peak N and the trough point) is greater than a predetermined

threshold value and 2) the positive going portion of the segment (i.e., amplitude

difference between the trough point and peak N+1) is greater than a predetermined

threshold. Fifty percent of the waveform's root means square (rms) value is taken as the

threshold. If a trough is not found in the segment between peaks N and N+1, the

algorithm then checks the segment between peak N and Peak N+2. This process
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continues till a valid trough and peak pair is found and ensures that a heart-bump is not

detected as a breath.

Figure 3.9 Peaks detected by the basic peak detector.

3.3.2 Adaptive Refractory Filter

Other kinds of cyclical variations may also be present in the respiration waveform due to

body motion [27]. These can cause large variations in amplitude and may be detected as a

breath. To remove these false peaks, a refractory filter is implemented. It removes any

peak or trough that occurs too soon. The filter determines a hold-off (refractory) period

during which any detected peaks are ignored. The length of the refractory period is

adaptive in that it uses 35% of the average of last three inter-breath intervals. If a peak

falls before the hold-off, it is removed. When respiration rate is increasing, the inter-

breath interval would decrease and so the refractory period is also decreased. Figure 3.10

shows the false peaks that exist before passing through the refractory filter and the same

removed after passing through the filter. This adaptive nature of the refractory filter is

desirable since the respiration rate signal will be calculated for cases where the ECG was

taken during stress tests.
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Figure 3.10 EDR-RWA waveform with refractory filter off (top) and on (bottom).

3.3.3 Missing Peak Detector

Refractory filter accounts for peaks that occur too soon, but there are conditions when a

peak is detected too late. It is possible that a peak may have been missed in between. To

account for such missed peaks, a missing peak detector has been implemented. If a peak

does not occur within a time frame of almost two breaths, it is possible that a peak has

been missed. Thus the detector indicates a missed peak, if the inter-breath interval for a

peak exceeds the average of the last three inter-breath intervals by 75%. Taking the

average of the last three inter-breath intervals, makes the detector adaptive and as

discussed earlier helps account for changes in respiration rate.

A second pass of the respiration rate peak detector occurs when a peak has been

suspected missing. Since the respiration rate peak detector relies on peak-to-trough and

trough-to-peak amplitudes being greater than the threshold, a missed peak may be due to

the fact that the waveform may have been attenuated due to noise and, thereby, the peak-

to-trough and the tough-to-peak amplitudes were less than the threshold level. To find
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such peaks and troughs, the threshold is reduced and the peak detection is repeated by the

respiration rate peak detector. The top plot in Figure 3.11 shows the missed peak while

the bottom plot shows the same peak detected after undergoing a second pass of peak

detection.

Figure 3.11 EDR segment with a missed peak (top) and after passing through missing
peak detector (bottom).

The peak detector algorithm produces the time indices associated with when

respiration peaks occur. However, the peaks are not equally spaced in time. To obtain a

continuous time sampled waveform, the peak time indices are passed through a spline

interpolator to obtain a continuous time varying waveform.



CHAPTER 4

RESULTS

4.1 Viability of EDR Methods

ECG derived respiration signals were obtained using the three methods i.e., RWA, RWD

and RWA*RWD. Visual inspection showed good similarity between the derived signals

and actual respiration signal. Figures 4.1 a, b, and c shows the different EDR methods

plotted against the actual respiration signal with an offset. RWA signals (Figure 4.1(a))

and RWA*RWD signals (Figure 4.1(c)) showed better similarity to the actual respiration

signal than the RWD signal (Figure 4.1(b)).

Figure 4.1 (a) EDR signals due to the RWA method plotted against actual respiration.

Figure 4.1 (b) EDR signals due to the RWD method plotted against actual respiration.

33
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Figure 4.1 (c) EDR signals due to the RWA*RWD method plotted against actual
respiration.

The ECG and actual respiration were obtained by paced breathing at 8, 12 and 16

breaths/min; therefore a single frequency would represent the respiratory frequency in the

actual as well as the derived respiration signals. Spectral analysis can thus be used to find

the respiration frequency and compare the actual and derived signals. To find this

respiration frequency, power spectrum is computed using the following equation:

FFT * (Signal) x FFT(Signal)
PowerSpectrum =

N2

N is the number of points in the signal array and * denotes complex conjugate. In the

power spectrum the frequency with maximum power represents the respiration frequency

and thus the respiration rate. Figure 4.2 shows the power spectrum of actual respiration

and EDR signals along with the estimated frequency peak and respiration rate for a

subject, utilizing a LabVIEW program.

Similarly, respiratory rates for all the samples were computed using the power

spectrum for quantitative analysis. Tables 4.1, 4.2, 4.3 shows respiration data at different

paced breathing rates for actual respiration and EDR signals for different subjects.
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Figure 4.2 Power spectrum of a subject's actual respiration and the three methods of
obtaining an EDR signal.

To compare the three EDR techniques with the actual respiration, the mean and

standard deviation (SD) for all were calculated and are displayed in the Tables 4.1, 4.2,

and 4.3 for each group of paced breathed data. If many data points are close to the mean,

then the standard deviation is small; if many data points are far from the mean, then the
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standard deviation is large. If all the data values are equal, then the standard deviation is

zero [28].

Table 4.1 Respiration Rates for 8 Breaths/min Paced Breathed Samples

Subject Actual

Respiration

RWA RWD RWA*

RWD

1A 7.522 7.406 6.840 7.389

1B 7.512 7.492 12.088 12.058

1C 7.518 7.495 26.216 9.302

2A 7.465 7.467 7.463 7.460

2B 7.500 7.510 7.535 7.514

3A 7.507 7.498 13.030 7.495

3B 7.472 7.471 7.408 7.466

4A 7.527 7.493 15.850 7.493

4B 7.508 7.507 6.477 7.537

5A 7.497 7.484 7.466 7.485

5B 7.485 7.510 7.483 7.503

6 7.495 7.508 7.435 7.509

7A 7.458 7.449 27.591 7.454

7B 7.502 7.495 7.677 7.497

8 7.492 7.493 7.543 7.479

9A 7.500 7.511 32.160 7.502

9B 7.474 7.481 7.520 7.479

Mean 7.496 7.486 12.222 7.860

SD 0.020 0.027 8.313 1.168

Note: All units are in breaths/min



Table 4.2 Respiration Rates for 12 Breaths/min Paced Breathed Samples

Subject Actual

Respiration

RWA RWD RWA*

RWD

1A 10.702 10.656 10.725 10.681

2A 10.691 10.773 12.680 12.651

2B 10.677 10.671 10.689 10.675

2C 10.690 10.685 10.678 10.679

3A 10.673 10.663 14.794 10.655

3B 10.690 10.700 17.968 10.697

4A 10.855 10.793 10.077 10.622

4B 10.649 10.652 10.635 10.651

5A 10.728 10.751 19.030 10.748

5B 10.742 10.758 17.224 10.762

6A 10.712 10.726 10.757 10.728

6B 10.686 10.689 10.674 10.686

7 10.693 10.691 8.166 10.695

8A 11.534 11.536 26.363 11.530

8B 11.301 11.276 33.683 11.299

9A 10.635 10.634 10.686 10.632

10A 10.705 10.715 10.792 10.712

10B 10.701 10.712 10.836 10.710

Mean 10.781 10.782 14.248 10.710

SD 0.239 0.235 6.594 0.503

Note: All units are in breaths/min
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Table 4.3 Respiration Rates for 16 Breaths/min Paced Breathed Samples

Subject Actual

Respiration

RWA RWD RWA*

RWD

1A 13.414 13.381 13.424 13.387

1B 13.693 13.708 12.476 12.552

2A 13.626 13.626 13.617 13.623

2B 13.632 13.639 13.631 13.633

3A 13.675 13.671 8.860 13.672

3B 13.626 13.628 13.782 13.625

4 13.636 13.651 13.724 13.687

5A 13.266 13.598 7.502 13.602

5B 13.582 13.556 13.604 13.518

6A 13.602 13.607 13.610 13.607

6B 13.638 13.644 13.652 13.646

7 13.679 13.675 13.804 13.678

8 14.234 14.223 24.674 14.200

9 13.655 13.662 13.132 13.647

10A 13.642 13.634 13.622 13.636

10B 13.665 13.66 13.735 13.661

Mean 13.641 13.660 13.553 13.585

SD 0.192 0.167 3.501 0.320

Note: All units are in breaths/min
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Table 4.4 summarizes the results. From this table, for each of the 3 respiration

rates, the mean and standard deviation for EDR method using RWA is closest to the

actual respiration than the RWA*RWD and RWD methods. This implies that to derive

the respiration signal from ECG the EDR method using RWA yields the better fit to the

actual respiration than the other two methods.

Table 4.4 Summary of the Mean and SD for All Samples' Respiration Rates

Statistic Actual

Respiration

RWA RWD RWA*

RWD

Respiration 8 breaths/min

Mean 7.496 7.486 12.222 7.860

SD 0.020 0.027 8.313 1.168

Respiration 12 breaths/min

Mean 10.781 10.782 14.248 10.710

SD 0.239 0.235 6.594 0.503

Respiration 16 breaths/min

Mean 13.641 13.660 13.553 13.585

SD 0.192 0.167 3.501 0.320

Note: All units are in breaths/min

Correlation indicates the strength and direction of a linear relationship between

two random variables [ 29 ]. In the current research actual respiration and derived

respiration are the two random variables to be compared. RWA gives a correlation of

0.945 with actual respiration while RWD and RWA*RWD give correlation of 0.066 and

0.757 respectively. Correlation analysis also points that RWA is a better estimator of

respiration signal than the other two methods.
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The scatter plot is also considered a good technique for comparison of a new

measurement technique with an established one [ 30]. For the current research it is

necessary to determine whether the displacement sensor and EDR techniques for

obtaining respiration signal agree sufficiently and if the derived signal can replace the

actual signal. When the data is plotted, all points would lie on the line of equality, if the

two techniques exhibit perfect agreement. Figure 4.3 shows the scatter plots for

comparing displacement sensor technique with EDR techniques for obtaining respiration

signal. It is clear that the respiration signal obtained using RWA is in good agreement

with the actual respiration.

Figure 4.3 Scatter plots for comparing displacement technique with EDR techniques for
obtaining respiration signal.
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4.2. Viability of Respiration Rate Algorithm

Data analysis of EDR signals by spectral analysis, correlation coefficients and scatter

plots reveals that RWA is a preferable method for deriving respiration from a single lead

ECG. Once the best technique was identified, an adaptive algorithm was developed to

obtain a continuous respiration rate signal. Figure 4.4 shows respiration rate signal

obtained from both the actual respiration and derived one using RWA technique. Visual

inspection shows that both signal show a degree of similarity.

Figure 4.4 Respiration rate signal extracted from actual and derived respiration.

The Tables 4.5, 4.6 and 4.7 show the root mean square error also called root mean

square deviation calculated for each subject at different paced breathed samples with

respect to actual respiration rate signal. Root mean square error (RMSE) is a frequently

used measure of the differences between actual values expected and the values actually

observed from the parameter being estimated [31]. The mean standard error for all the

samples is about 0.25 breaths/min, which is less than 5 percent. Thus it can be said that

the algorithm produces respiration rate signal at a high level of accuracy.
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As an outcome of this research a program has been developed which can be used

to obtain a continuous respiration rate signal from a single lead ECG with a high level of

accuracy.

Table 4.5 RMSE for 8 Breaths/min Paced Breathed Respiration Rate Samples

Subject RMSE

1A 0.250

1B 0.177

1C 0.311

2A 0.204

2B 0.114

3A 0.139

3B 0.161

4 0.329

5A 0.182

5B 0.463

6A 0.072

6B 0.201

7 0.094

8A 0.094

8B 0.139

9 0.111

10A 0.119

10B 0.135

10C 0.331

Mean 0.190

Note: All units are in breaths/min



Table 4.6 RMSE for 12 Breaths/min Paced Breathed Respiration Rate Samples

Subject RMSE

1 0.243

2A 0.284

2B 0.621

3A 0.367

3B 0.186

3C 0.234

4A 0.187

4B 0.145

5A 0.309

5B 0.795

5C 0.481

5A 0.254

5B 0.247

6A 0.175

6B 0.210

7 0.118

8A 0.250

8B 0.140

9A 0.158

9B 0.508

10A 0.125

10B 0.135

10C 0.118

Mean 0.273

Note: All units are in breaths/min
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Table 4.7 RMSE for 16 Breaths/min Paced Breathed Respiration Rate Samples

Subject RMSE

1A 0.598

1B 0.451

2A 0.161

2B 0.186

2C 0.487

3A 0.249

3B 0.228

4 0.250

5A 0.228

5B 0.349

6A 0.158

6B 0.107

7 0.616

8A 0.168

9A 0.299

9B 0.361

9C 0.114

Mean 0.294

Note: All units are in breaths/min
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4.3 Implementing the ECG Derived Respiration Rate Program

The research was conducted on ECG obtained simultaneously with paced breathed

respiration. To demonstrate the use of program in producing a respiration rate signal, few

samples of stress data obtained from Dr. Zaim [25] that included exercise and recovery

periods were analyzed. In Figures 4.5 - 4.7, two graphs are plotted. The top graph depicts

the Heart Rate (HR) (also know as the inter-beat interval (IBI)) vs. time taken during a

stress test. In these graphs three segments can be seen: paced breathing, exercise and

recovery. For example, Figure 4.5 shows paced breathing from 0 to 400 seconds, exercise

from 400 to 900 seconds, and recovery from 900 to 1150 seconds. The bottom graph is a

plot of the respiration rate associated with this stress test, developed using RWA method.

In all the cases (Figures 4.5-4.7), the respiration rate tracks HR. That is respiration is

constant during the paced breathing segment, increases during the exercise period, and

drops during the recovery period.



Figure 4.5 IBI and respiration rate plots for stress sample_1 .

IBI
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Figure 4.6 IBI and respiration rate plots for stress sample_2.
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Figure 4.7 IBI and respiration rate plots for stress_sample_3.



CHAPTER 5

CONCLUSION

A preferred technique for deriving respiration signal from a single lead ECG has been

identified: the RWA method. The potential advantages of such a technique are its low

cost, high convenience, and the ability to simultaneously monitor cardiac and respiratory

activity, without the need for cumbersome devices that may interfere with natural

breathing during ambulatory monitoring, stress testing, and sleep studies. This technique

is also useful to develop a respiration rate signal from a large database of single lead

ECGs, where there is no associated respiration signal.

The research shows that R-wave amplitude modulation (RWA) is the best

technique for obtaining a single lead EDR signal. R-wave duration (RWD) technique

fails under certain situations and is not suitable for single lead EDR. RWA*RWD, the

third technique explored, proved to be an inferior technique to RWA, due to the inherent

limitations imposed by the RWD technique.

A program written in LabVIEW has been developed to obtain ECG derived

respiration rate signal (EDRR) from a single lead ECG.

The single lead EDR accurately measures the frequency of respiratory efforts, but

it does not follow the changes in tidal volume. A quantitative explanation of the tidal

volume represented by the EDR signal does not seem to be achievable as the depth of

modulation on ECG varies from patient to patient [32].

Though most of the work in EDR has been implemented on multi-lead ECG

based on electric axis measurement, it has also been suggested that assessing the mean
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electrical axis is not as robust a technique as direct assessment of the respiratory

modulation [32]. The current research has shown that even a single-lead EDR technique

is sufficiently sensitive to identify respiratory events and provide information about

respiratory rate. It has also been proven by other researchers that single lead techniques

are not unduly affected by postural position [1]. Therefore, the single lead technique

developed as a result of this research could be used in applications even where there are

significant changes in body positions as in stress test analysis for HRV studies or sleep

analysis for apnea studies.



CHAPTER 6

FUTURE WORK

A significant amount of data on exercise and heart rate recovery exists at NJIT which

includes single lead ECG but not the associated respiration signal. It is well established

that respiratory activity interacts, at the central nervous system level, with the efferent

autonomic tone which directly affects heart rate variability by modulating sympathetic

and parasympathetic nerve traffic [33 ]. In addition, the abnormalities in respiratory

modulation are an indication of autonomic dysfunction [34]. With the ability to develop a

respiratory signal from this database of exercise and heart rate recovery ECGs, a study

could be performed to identify the types of respiratory abnormalities that correlate to

different kinds of autonomic dysfunction.

HRV analysis is carried out in the frequency domain, using spectral analysis of

inter beat intervals (IBI) of ECG and in the time domain, by extracting statistical indexes

not related to specific cycle lengths. Parasympathetic activity is primarily reflected in the

high-frequency (HF) band of the power spectrum (0.15-0.40Hz) and it is related to the

respiratory frequency. The low-frequency (LF) component (0.04-0.15 Hz) is considered

by some investigators as a marker of sympathetic modulation [35] and by others as

influenced by both the sympathetic and parasympathetic activity [36]. The LF and HF are

of particular importance in the clinical environment because the ratio LF/HF is a widely

used index of sympathovagal balance [37]. The possibility of selectively and efficiently

eliminating the respiratory component from heart rate variability analysis makes it

possible to more accurately evaluate the HF role in autonomic nervous system studies.
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This is especially important in studying data on heart rate recovery. A technique by Anne

Marie Petrock [24] has been developed to remove respiratory component from ECG.

However, this technique could not be applied to the extensive dataset that NJIT has from

previous exercise studies, since there is no associated respiration signal. This is especially

important for future studies on the autonomic changes that occur during heart rate

recovery. The methods described in this thesis will enable a respiration signal to be

developed from the single lead ECG signals, and thus provide future researchers with the

ability to study a respiration-free HF signal during heart rate recovery.

Central and mixed apnea, hypopnea, and tachypnea were identified with

confidence using multi-lead ECG, but not all obstructive apneas could be identified. In a

subsequent work by Mazzanti and others [2], they provided a quantitative evaluation of

the performance of their EDR algorithm in determining obstructive apneas, and

concluded that the EDR alone can be useful in determining the presence of obstructive

apneas. A drawback of their technique is the need for multiple leads, and also the need

for a short training period for the algorithm. The single lead EDR technique could be

explored to diagnose sleep apneas where multi-lead techniques have been validated.

Analysis of samples of stress data reveals variability in respiration rate during the

stress and recovery periods for a subject. This offers a potential for a study in respiration

rate variability during stress test analysis and the underlying physiology behind it. In

Figure 6.1, two graphs are presented. The top one depicts the Heart Rate (IBI) vs. time

taken during a stress test. In this graph, three segments can be seen: paced breathing

from 0 to 400 seconds, exercise from 400 to 900 seconds, and recovery from 900 to 1150
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seconds. Below this graph is a graph of the respiration rate associated with this stress test.

In this second graph, an example of respiration rate variability is shown.

IBI

Figure 6.1 Stress test analysis of ECG and respiration (a) IBI (b) Respiration rate.

The single lead EDR accurately measures the frequency of respiratory efforts, but

it does not follow the changes in tidal volume [1]. Studies could be performed to

accurately measure changes in tidal volume from an EDR.



APPENDIX A

ECG DERIVED RESPIRATION ALGORITHM CODES

The following figures are the LabVIEW codes for algorithms for R wave detection and

different EDR methods explored in the research. Every code has a front panel and

associated block diagram.

Figure AA Front panel of EDR program.
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Figure A.3 Front panel of R wave detection algorithm.
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Figure A.4 LabVIEW block diagram of R wave detection algorithm.
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Figure A.5 Front panel of RWA algorithm.

9

Figure A.6 LabVIEW block diagram of RWA algorithm.



Figure A.7 Front panel of RWD algorithm.
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Figure A.8 LabVIEW block diagram of RWD algorithm.



APPENDIX B

RESPIRATION RATE EXTRACTOR ALGORITHM CODES

The following figures are the codes for respiration rate extractor algorithms. FigureB.1 is

the front panel of the program developed to derived respiration rate signal from a single

lead ECG.

EDR•RR v1.0.vi

300

Figure B.1 Front panel of respiration rate extractor algorithm.

Figure B.2 LabVIEW block diagram of respiration rate detector algorithm.
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Figure B.3 VI Hierarchy of respiration rate extractor algorithm.

Figure B.4 LabVIEW block diagram of missing peak detector algorithm.



APPENDIX C

IBI AND RESPIRATION VS. TIME PLOTS FOR STRESS SAMPLES

To demonstrate the use of EDRR program, few stress test samples were analyzed and are

discussed in Section 4.3. Here are a few more samples. The top graph depicts the Heart

Rate (HR) (also know as the inter-beat interval (IBI)) vs. time taken during a stress test.

The bottom graph is a plot of the respiration rate vs. time associated for this stress test.

Figure C.1 IBI and respiration rate plots for stress_sample_4.
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Figure C.2 IBI and respiration rate plots for stress_sample_5.
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Figure C.3 IBI and respiration rate plots for stress_sample_6.



Figure C.4 IBI and respiration rate plots for stress_sample_7.
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Figure C.5 IBI and respiration rate plots for stress_sample 8.
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Figure C.6 IBI and respiration rate plots for stress sample ' 9.
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