24 research outputs found

    Scaling properties at the interface between different critical subsystems: The Ashkin-Teller model

    Full text link
    We consider two critical semi-infinite subsystems with different critical exponents and couple them through their surfaces. The critical behavior at the interface, influenced by the critical fluctuations of the two subsystems, can be quite rich. In order to examine the various possibilities, we study a system composed of two coupled Ashkin-Teller models with different four-spin couplings epsilon, on the two sides of the junction. By varying epsilon, some bulk and surface critical exponents of the two subsystems are continuously modified, which in turn changes the interface critical behavior. In particular we study the marginal situation, for which magnetic critical exponents at the interface vary continuously with the strength of the interaction parameter. The behavior expected from scaling arguments is checked by DMRG calculations.Comment: 10 pages, 9 figures. Minor correction

    Numerical study of the critical behavior of the Ashkin-Teller model at a line defect

    Full text link
    We consider the Ashkin-Teller model on the square lattice, which is represented by two Ising models (σ\sigma and τ\tau) having a four-spin coupling of strength, ϵ\epsilon, between them. We introduce an asymmetric defect line in the system along which the couplings in the σ\sigma Ising model are modified. In the Hamiltonian version of the model we study the scaling behavior of the critical magnetization at the defect, both for σ\sigma and for τ\tau spins by density matrix renormalization. For ϵ>0\epsilon>0 we observe identical scaling for σ\sigma and τ\tau spins, whereas for ϵ<0\epsilon<0 one model becomes locally ordered and the other locally disordered. This is different of the critical behavior of the uncoupled model (ϵ=0\epsilon=0) and is in contradiction with the results of recent field-theoretical calculations.Comment: 6 pages, 4 figure

    Boundary critical behaviour of two-dimensional random Ising models

    Full text link
    Using Monte Carlo techniques and a star-triangle transformation, Ising models with random, 'strong' and 'weak', nearest-neighbour ferromagnetic couplings on a square lattice with a (1,1) surface are studied near the phase transition. Both surface and bulk critical properties are investigated. In particular, the critical exponents of the surface magnetization, 'beta_1', of the correlation length, 'nu', and of the critical surface correlations, 'eta_{\parallel}', are analysed.Comment: 16 pages in ioplppt style, 7 ps figures, submitted to J. Phys.

    Percolation and Conduction in Restricted Geometries

    Full text link
    The finite-size scaling behaviour for percolation and conduction is studied in two-dimensional triangular-shaped random resistor networks at the percolation threshold. The numerical simulations are performed using an efficient star-triangle algorithm. The percolation exponents, linked to the critical behaviour at corners, are in good agreement with the conformal results. The conductivity exponent, t', is found to be independent of the shape of the system. Its value is very close to recent estimates for the surface and bulk conductivity exponents.Comment: 10 pages, 7 figures, TeX, IOP macros include

    Griffiths-McCoy singularities in random quantum spin chains: Exact results through renormalization

    Full text link
    The Ma-Dasgupta-Hu renormalization group (RG) scheme is used to study singular quantities in the Griffiths phase of random quantum spin chains. For the random transverse-field Ising spin chain we have extended Fisher's analytical solution to the off-critical region and calculated the dynamical exponent exactly. Concerning other random chains we argue by scaling considerations that the RG method generally becomes asymptotically exact for large times, both at the critical point and in the whole Griffiths phase. This statement is checked via numerical calculations on the random Heisenberg and quantum Potts models by the density matrix renormalization group method.Comment: 4 pages RevTeX, 2 figures include

    Disorder Induced Phases in Higher Spin Antiferromagnetic Heisenberg Chains

    Full text link
    Extensive DMRG calculations for spin S=1/2 and S=3/2 disordered antiferromagnetic Heisenberg chains show a rather distinct behavior in the two cases. While at sufficiently strong disorder both systems are in a random singlet phase, we show that weak disorder is an irrelevant perturbation for the S=3/2 chain, contrary to what expected from a naive application of the Harris criterion. The observed irrelevance is attributed to the presence of a new correlation length due to enhanced end-to-end correlations. This phenomenon is expected to occur for all half-integer S > 1/2 chains. A possible phase diagram of the chain for generic S is also discussed.Comment: 6 Pages and 6 figures. Final version as publishe

    Corner Exponents in the Two-Dimensional Potts Model

    Full text link
    The critical behavior at a corner in two-dimensional Ising and three-state Potts models is studied numerically on the square lattice using transfer operator techniques. The local critical exponents for the magnetization and the energy density for various opening angles are deduced from finite-size scaling results at the critical point for isotropic or anisotropic couplings. The scaling dimensions compare quite well with the values expected from conformal invariance, provided the opening angle is replaced by an effective one in anisotropic systems.Comment: 11 pages, 2 eps-figures, uses LaTex and eps

    Surface critical behavior of random systems at the ordinary transition

    Full text link
    We calculate the surface critical exponents of the ordinary transition occuring in semi-infinite, quenched dilute Ising-like systems. This is done by applying the field theoretic approach directly in d=3 dimensions up to the two-loop approximation, as well as in d=4ϵd=4-\epsilon dimensions. At d=4ϵd=4-\epsilon we extend, up to the next-to-leading order, the previous first-order results of the ϵ\sqrt{\epsilon} expansion by Ohno and Okabe [Phys.Rev.B 46, 5917 (1992)]. In both cases the numerical estimates for surface exponents are computed using Pade approximants extrapolating the perturbation theory expansions. The obtained results indicate that the critical behavior of semi-infinite systems with quenched bulk disorder is characterized by the new set of surface critical exponents.Comment: 11 pages, 11 figure

    The impact of circulating preeclampsia-associated extracellular vesicles on the migratory activity and phenotype of THP-1 monocytic cells

    Get PDF
    Intercellular communication via extracellular vesicles (EVs) and their target cells, especially immune cells, results in functional and phenotype changes that consequently may play a significant role in various physiological states and the pathogenesis of immune-mediated disorders. Monocytes are the most prominent environment-sensing immune cells in circulation, skilled to shape their microenvironments via cytokine secretion and further differentiation. Both the circulating monocyte subset distribution and the blood plasma EV pattern are characteristic for preeclampsia, a pregnancy induced immune-mediated hypertensive disorder. We hypothesized that preeclampsia-associated EVs (PE-EVs) induced functional and phenotypic alterations of monocytes. First, we proved EV binding and uptake by THP-1 cells. Cellular origin and protein cargo of circulating PE-EVs were characterized by flow cytometry and mass spectrometry. An altered phagocytosis-associated molecular pattern was found on 12.5 K fraction of PE-EVs: an elevated CD47 "don't eat me" signal (p < 0.01) and decreased exofacial phosphatidylserine "eat-me" signal (p < 0.001) were found along with decreased uptake of these PE-EVs (p < 0.05). The 12.5 K fraction of PE-EVs induced significantly lower chemotaxis (p < 0.01) and cell motility but accelerated cell adhesion of THP-1 cells (p < 0.05). The 12.5 K fraction of PE-EVs induced altered monocyte functions suggest that circulating EVs may have a role in the pathogenesis of preeclampsia
    corecore