75 research outputs found

    Genomic Regions Conserved in Lineage II \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Strains

    Get PDF
    Populations of the food- and waterborne pathogen Escherichia coli O157:H7 are comprised of two major lineages. Recent studies have shown that specific genotypes within these lineages differ substantially in the frequencies with which they are associated with human clinical disease. While the nucleotide sequences of the genomes of lineage I strains E. coli O157 Sakai and EDL9333 have been determined, much less is known about the genomes of lineage II strains. In this study, suppression subtractive hybridization (SSH) was used to identify genomic features that define lineage II populations. Three SSH experiments were performed, yielding 1,085 genomic fragments consisting of 811 contigs. Bacteriophage sequences were identified in 11.3% of the contigs, 9% showed insertions and 2.3% deletions with respect to E. coli O157:H7 Sakai, and 23.2% did not have significant identity to annotated sequences in GenBank. In order to test for the presence of these novel loci in lineage I and II strains, 27 PCR primer sets were designed based on sequences from these contigs. All but two of these PCR targets were found in the majority (51.9% to 100%) of 27 lineage II strains but in no more than one (\u3c6%) of the 17 lineage I strains. Several of these linage II-related fragments contain insertions/deletions that may play an important role in virulence. These lineage II-related loci were also shown to be useful markers for genotyping of E. coli O157:H7 strains isolated from human and animal sources

    Genomic Regions Conserved in Lineage II \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Strains

    Get PDF
    Populations of the food- and waterborne pathogen Escherichia coli O157:H7 are comprised of two major lineages. Recent studies have shown that specific genotypes within these lineages differ substantially in the frequencies with which they are associated with human clinical disease. While the nucleotide sequences of the genomes of lineage I strains E. coli O157 Sakai and EDL9333 have been determined, much less is known about the genomes of lineage II strains. In this study, suppression subtractive hybridization (SSH) was used to identify genomic features that define lineage II populations. Three SSH experiments were performed, yielding 1,085 genomic fragments consisting of 811 contigs. Bacteriophage sequences were identified in 11.3% of the contigs, 9% showed insertions and 2.3% deletions with respect to E. coli O157:H7 Sakai, and 23.2% did not have significant identity to annotated sequences in GenBank. In order to test for the presence of these novel loci in lineage I and II strains, 27 PCR primer sets were designed based on sequences from these contigs. All but two of these PCR targets were found in the majority (51.9% to 100%) of 27 lineage II strains but in no more than one (\u3c6%) of the 17 lineage I strains. Several of these linage II-related fragments contain insertions/deletions that may play an important role in virulence. These lineage II-related loci were also shown to be useful markers for genotyping of E. coli O157:H7 strains isolated from human and animal sources

    Genome evolution in major Escherichia coli O157:H7 lineages

    Get PDF
    © 2007 Zhang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many approaches have been used to study the evolution, population structure and genetic diversity of <it>Escherichia coli </it>O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of <it>E. coli </it>O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH). Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP) typing. In this study an <it>in silico </it>comparison of six different genotyping approaches was performed on 19 <it>E. coli </it>genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the <it>E. coli </it>O157:H7 population, and to compare genotyping methods for O157:H7 strains.</p> <p>Results</p> <p><it>In silico </it>determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to <it>E. coli </it>K12 and <it>E. coli </it>O55:H7, O145:NM and sorbitol-fermenting O157 strains.</p> <p>Conclusion</p> <p>The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping methods should provide data that can be stored centrally and accessed locally in an easily transferable, informative and extensible format based on comparative genomic analyses.</p

    Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pan-genome of a bacterial species consists of a core and an accessory gene pool. The accessory genome is thought to be an important source of genetic variability in bacterial populations and is gained through lateral gene transfer, allowing subpopulations of bacteria to better adapt to specific niches. Low-cost and high-throughput sequencing platforms have created an exponential increase in genome sequence data and an opportunity to study the pan-genomes of many bacterial species. In this study, we describe a new online pan-genome sequence analysis program, Panseq.</p> <p>Results</p> <p>Panseq was used to identify <it>Escherichia coli </it>O157:H7 and <it>E. coli </it>K-12 genomic islands. Within a population of 60 <it>E. coli </it>O157:H7 strains, the existence of 65 accessory genomic regions identified by Panseq analysis was confirmed by PCR. The accessory genome and binary presence/absence data, and core genome and single nucleotide polymorphisms (SNPs) of six <it>L. monocytogenes </it>strains were extracted with Panseq and hierarchically clustered and visualized. The nucleotide core and binary accessory data were also used to construct maximum parsimony (MP) trees, which were compared to the MP tree generated by multi-locus sequence typing (MLST). The topology of the accessory and core trees was identical but differed from the tree produced using seven MLST loci. The Loci Selector module found the most variable and discriminatory combinations of four loci within a 100 loci set among 10 strains in 1 s, compared to the 449 s required to exhaustively search for all possible combinations; it also found the most discriminatory 20 loci from a 96 loci <it>E. coli </it>O157:H7 SNP dataset.</p> <p>Conclusion</p> <p>Panseq determines the core and accessory regions among a collection of genomic sequences based on user-defined parameters. It readily extracts regions unique to a genome or group of genomes, identifies SNPs within shared core genomic regions, constructs files for use in phylogeny programs based on both the presence/absence of accessory regions and SNPs within core regions and produces a graphical overview of the output. Panseq also includes a loci selector that calculates the most variable and discriminatory loci among sets of accessory loci or core gene SNPs.</p> <p>Availability</p> <p>Panseq is freely available online at <url>http://76.70.11.198/panseq</url>. Panseq is written in Perl.</p

    The evolution of the pan-genome of Shiga-toxin (Stx) producing Escherichia coli and the Stx₂ bacteriophage

    Get PDF
    xvi, 206 leaves : ill. (some col.) ; 29 cmHuman infections with Shiga-toxin (Stx)-producing E. coli (STEC) vary in severity of illness. The pan-genome of a bacterial species contains a shared, essential core genome, and a variably distributed accessory genome. While single nucleotide changes likely influence virulence in STEC, horizontal gene transfer (HGT) on elements such as bacteriophage are thought to be most important. My thesis objectives were to: 1) develop tools for the pangenomic analyses of bacterial genomes; 2) describe the phylogeny of STEC and; 3) determine if the evolution of the Stx2-bacteriophage parallels that of its bacterial host. For this thesis, the software program Panseq was created and used to identify pan-genomic differences among STEC. Whole-genome phylogenies showed all serotypes as discrete clusters, with O157:H7 having three distinct lineages and grouping separately from all other STEC. Finally, the phylogenies of Stx2-bacteriophage and their bacterial hosts were largely concordant, with occasional instances of HGT having led to novel pathogen emergence

    Genotypic Characterization and Prevalence of Virulence Factors among Canadian \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Strains

    Get PDF
    In this study, the association between genotypic and selected phenotypic characteristics was examined in a collection of Canadian Escherichia coli O157:H7 strains isolated from humans and cattle in the provinces of Alberta, Ontario, Saskatchewan, and Quebec. In a subset of 69 strains selected on the basis of specific phage types (PTs), a strong correlation between the lineage-specific polymorphism assay (LSPA6) genotype and PT was observed with all strains of PTs 4, 14, 21, 31, 33, and 87 belonging to the LSPA6 lineage I (LSPA6-LI) genotype, while those of PTs 23, 45, 67, and 74 belonged to LSPA6 lineage II (LSPA6-LII) genotypes. This correlation was maintained when additional strains of each PT were tested. E. coli O157:H7 strains with the LSPA6-LI genotype were much more common in the collection than were the LSPA6-LII or lineage I/II (LSPA6-LI/II)-related genotypes (82.6, 11.2, and 5.8%, respectively). Of the strains tested, proportionately more LSPA6-LI than LSPA6-LII genotype strains were isolated from humans (52.7% versus 19.7%) than from cattle (47.8% versus 80.2%). In addition, 96.7% of the LSPA6-LII strains carried the stx2c variant gene, while only 50.0% of LSPA6-LI/II and 2.7% of LSPA6-LI strains carried this gene. LSPA6-LII strains were also significantly more likely to possess the colicin D gene, cda (50.8% versus 23.2%), and have combined resistance to streptomycin, sulfisoxazole, and tetracycline (72.1% versus 0.9%) than were LSPA6-LI strains. The LSPA6 genotype- and PT-related characteristics identified may be important markers of specific ecotypes of E. coli O157:H7 that have unique epidemiological and virulence characteristics

    Genotypic Characterization and Prevalence of Virulence Factors among Canadian \u3ci\u3eEscherichia coli\u3c/i\u3e O157:H7 Strains

    Get PDF
    In this study, the association between genotypic and selected phenotypic characteristics was examined in a collection of Canadian Escherichia coli O157:H7 strains isolated from humans and cattle in the provinces of Alberta, Ontario, Saskatchewan, and Quebec. In a subset of 69 strains selected on the basis of specific phage types (PTs), a strong correlation between the lineage-specific polymorphism assay (LSPA6) genotype and PT was observed with all strains of PTs 4, 14, 21, 31, 33, and 87 belonging to the LSPA6 lineage I (LSPA6-LI) genotype, while those of PTs 23, 45, 67, and 74 belonged to LSPA6 lineage II (LSPA6-LII) genotypes. This correlation was maintained when additional strains of each PT were tested. E. coli O157:H7 strains with the LSPA6-LI genotype were much more common in the collection than were the LSPA6-LII or lineage I/II (LSPA6-LI/II)-related genotypes (82.6, 11.2, and 5.8%, respectively). Of the strains tested, proportionately more LSPA6-LI than LSPA6-LII genotype strains were isolated from humans (52.7% versus 19.7%) than from cattle (47.8% versus 80.2%). In addition, 96.7% of the LSPA6-LII strains carried the stx2c variant gene, while only 50.0% of LSPA6-LI/II and 2.7% of LSPA6-LI strains carried this gene. LSPA6-LII strains were also significantly more likely to possess the colicin D gene, cda (50.8% versus 23.2%), and have combined resistance to streptomycin, sulfisoxazole, and tetracycline (72.1% versus 0.9%) than were LSPA6-LI strains. The LSPA6 genotype- and PT-related characteristics identified may be important markers of specific ecotypes of E. coli O157:H7 that have unique epidemiological and virulence characteristics

    Multi-Year Persistence of Verotoxigenic Escherichia coli (VTEC) in a Closed Canadian Beef Herd: A Cohort Study

    Get PDF
    In this study, fecal samples were collected from a closed beef herd in Alberta, Canada from 2012 to 2015. To limit serotype bias, which was observed in enrichment broth cultures, Verotoxigenic Escherichia coli (VTEC) were isolated directly from samples using a hydrophobic grid-membrane filter verotoxin immunoblot assay. Overall VTEC isolation rates were similar for three different cohorts of yearling heifers on both an annual (68.5 to 71.8%) and seasonal basis (67.3 to 76.0%). Across all three cohorts, O139:H19 (37.1% of VTEC-positive samples), O22:H8 (15.8%) and O?(O108):H8 (15.4%) were among the most prevalent serotypes. However, isolation rates for serotypes O139:H19, O130:H38, O6:H34, O91:H21, and O113:H21 differed significantly between cohort-years, as did isolation rates for some serotypes within a single heifer cohort. There was a high level of VTEC serotype diversity with an average of 4.3 serotypes isolated per heifer and 65.8% of the heifers classified as “persistent shedders” of VTEC based on the criteria of &gt;50% of samples positive and ≄4 consecutive samples positive. Only 26.8% (90/336) of the VTEC isolates from yearling heifers belonged to the human disease-associated seropathotypes A (O157:H7), B (O26:H11, O111:NM), and C (O22:H8, O91:H21, O113:H21, O137:H41, O2:H6). Conversely, seropathotypes B (O26:NM, O111:NM) and C (O91:H21, O2:H29) strains were dominant (76.0%, 19/25) among VTEC isolates from month-old calves from this herd. Among VTEC from heifers, carriage rates of vt1, vt2, vt1+vt2, eae, and hlyA were 10.7, 20.8, 68.5, 3.9, and 88.7%, respectively. The adhesin gene saa was present in 82.7% of heifer strains but absent from all of 13 eae+ve strains (from serotypes/intimin types O157:H7/Îł1, O26:H11/ÎČ1, O111:NM/Ξ, O84:H2/ζ, and O182:H25/ζ). Phylogenetic relationships inferred from wgMLST and pan genome-derived core SNP analysis showed that strains clustered by phylotype and serotype. Further, VTEC strains of the same serotype usually shared the same suite of antibiotic resistance and virulence genes, suggesting the circulation of dominant clones within this distinct herd. This study provides insight into the diverse and dynamic nature of VTEC populations within groups of cattle and points to a broad spectrum of human health risks associated with these E. coli strains

    Comparative genomic analysis of Escherichia coli 0157:H7 isolated from super-shedder and low-shedder cattle

    Get PDF
    Sherpa Romeo green journal; open accessCattle are the primary reservoir of the foodborne pathogen Escherichia coli O157:H7, with the concentration and frequency of E. coli O157:H7 shedding varying substantially among individual hosts. The term ‘‘super-shedder” has been applied to cattle that shed 104 cfu E. coli O157:H7/g of feces. Super-shedders have been reported to be responsible for the majority of E. coli O157:H7 shed into the environment. The objective of this study was to determine if there are phenotypic and/or genotypic differences between E. coli O157:H7 isolates obtained from super-shedder compared to low-shedder cattle. From a total of 784 isolates, four were selected from low-shedder steers and six isolates from super-shedder steers (4.01–8.45 log cfu/g feces) for whole genome sequencing. Isolates were phage and clade typed, screened for substrate utilization, pH sensitivity, virulence gene profiles and Stx bacteriophage insertion (SBI) sites. A range of 89–2473 total single nucleotide polymorphisms (SNPs) were identified when sequenced strains were compared to E. coli O157:H7 strain Sakai. More non-synonymous SNP mutations were observed in low-shedder isolates. Pan-genomic and SNPs comparisons did not identify genetic segregation between supershedder or low-shedder isolates. All super-shedder isolates and 3 of 4 of low-shedder isolates were typed as phage type 14a, SBI cluster 3 and SNP clade 2. Super-shedder isolates displayed increased utilization of galactitol, thymidine and 3-O-ÎČ-D-galactopyranosyl-Darabinose when compared to low-shedder isolates, but no differences in SNPs were observed in genes encoding for proteins involved in the metabolism of these substrates. While genetic traits specific to super-shedder isolates were not identified in this study, differences in the level of gene expression or genes of unknown function may still contribute to some strains of E. coli 0157:H7 reaching high densities within bovine feces.Ye
    • 

    corecore