33,120 research outputs found
SDSS J142625.71+575218.3: the First Pulsating White Dwarf With A Large Detectable Magnetic Field
We report the discovery of a strong magnetic field in the unique pulsating carbon- atmosphere white dwarf SDSS J142625.71 + 575218.3. From spectra gathered at the MMT and Keck telescopes, we infer a surface field of B(s) similar or equal to 1.2 MG, based on obvious Zeeman components seen in several carbon lines. We also detect the presence of a Zeeman- splitted He I lambda 4471 line, which is an indicator of the presence of a nonnegligible amount of helium in the atmosphere of this "hot DQ" star. This is important for understanding its pulsations, as nonadabatic theory reveals that some helium must be present in the envelope mixture for pulsation modes to be excited in the range of effective temperature where the target star is found. Out of nearly 200 pulsating white dwarfs known today, this is the first example of a star with a large detectable magnetic field. We suggest that SDSS J142625.71 + 575218.3 is the white dwarf equivalent of a rapidly oscillating Ap star.NSERCNSF AST 03-07321Reardon FoundationAstronom
Stable splitting of bivariate spline spaces by Bernstein-Bézier methods
We develop stable splitting of the minimal determining sets for the spaces of bivariate C1 splines on triangulations, including a modified Argyris space, Clough-Tocher, Powell-Sabin and quadrilateral macro-element spaces. This leads to the stable splitting of the corresponding bases as required in Böhmer's method for solving fully nonlinear elliptic PDEs on polygonal domains
Constraining neutron star tidal Love numbers with gravitational wave detectors
Ground-based gravitational wave detectors may be able to constrain the
nuclear equation of state using the early, low frequency portion of the signal
of detected neutron star - neutron star inspirals. In this early adiabatic
regime, the influence of a neutron star's internal structure on the phase of
the waveform depends only on a single parameter lambda of the star related to
its tidal Love number, namely the ratio of the induced quadrupole moment to the
perturbing tidal gravitational field. We analyze the information obtainable
from gravitational wave frequencies smaller than a cutoff frequency of 400 Hz,
where corrections to the internal-structure signal are less than 10 percent.
For an inspiral of two non-spinning 1.4 solar mass neutron stars at a distance
of 50 Mpc, LIGO II detectors will be able to constrain lambda to lambda < 2.0
10^{37} g cm^2 s^2 with 90% confidence. Fully relativistic stellar models show
that the corresponding constraint on radius R for 1.4 solar mass neutron stars
would be R < 13.6 km (15.3 km) for a n=0.5 (n=1.0) polytrope.Comment: 4 pages, 2 figures, minor correction
General-relativistic coupling between orbital motion and internal degrees of freedom for inspiraling binary neutron stars
We analyze the coupling between the internal degrees of freedom of neutron
stars in a close binary, and the stars' orbital motion. Our analysis is based
on the method of matched asymptotic expansions and is valid to all orders in
the strength of internal gravity in each star, but is perturbative in the
``tidal expansion parameter'' (stellar radius)/(orbital separation). At first
order in the tidal expansion parameter, we show that the internal structure of
each star is unaffected by its companion, in agreement with post-1-Newtonian
results of Wiseman (gr-qc/9704018). We also show that relativistic interactions
that scale as higher powers of the tidal expansion parameter produce
qualitatively similar effects to their Newtonian counterparts: there are
corrections to the Newtonian tidal distortion of each star, both of which occur
at third order in the tidal expansion parameter, and there are corrections to
the Newtonian decrease in central density of each star (Newtonian ``tidal
stabilization''), both of which are sixth order in the tidal expansion
parameter. There are additional interactions with no Newtonian analogs, but
these do not change the central density of each star up to sixth order in the
tidal expansion parameter. These results, in combination with previous analyses
of Newtonian tidal interactions, indicate that (i) there are no large
general-relativistic crushing forces that could cause the stars to collapse to
black holes prior to the dynamical orbital instability, and (ii) the
conventional wisdom with respect to coalescing binary neutron stars as sources
of gravitational-wave bursts is correct: namely, the finite-stellar-size
corrections to the gravitational waveform will be unimportant for the purpose
of detecting the coalescences.Comment: 22 pages, 2 figures. Replaced 13 July: proof corrected, result
unchange
Combinatorics of linear iterated function systems with overlaps
Let be points in , and let
be a one-parameter family of similitudes of : where
is our parameter. Then, as is well known, there exists a
unique self-similar attractor satisfying
. Each has
at least one address , i.e.,
.
We show that for sufficiently close to 1, each has different
addresses. If is not too close to 1, then we can still have an
overlap, but there exist 's which have a unique address. However, we
prove that almost every has addresses,
provided contains no holes and at least one proper overlap. We
apply these results to the case of expansions with deleted digits.
Furthermore, we give sharp sufficient conditions for the Open Set Condition
to fail and for the attractor to have no holes.
These results are generalisations of the corresponding one-dimensional
results, however most proofs are different.Comment: Accepted for publication in Nonlinearit
- …