6 research outputs found

    Analysis of α-synuclein species enriched from cerebral cortex of humans with sporadic dementia with Lewy bodies.

    Get PDF
    Since researchers identified α-synuclein as the principal component of Lewy bodies and Lewy neurites, studies have suggested that it plays a causative role in the pathogenesis of dementia with Lewy bodies and other 'synucleinopathies'. While α-synuclein dyshomeostasis likely contributes to the neurodegeneration associated with the synucleinopathies, few direct biochemical analyses of α-synuclein from diseased human brain tissue currently exist. In this study, we analysed sequential protein extracts from a substantial number of patients with neuropathological diagnoses of dementia with Lewy bodies and corresponding controls, detecting a shift of cytosolic and membrane-bound physiological α-synuclein to highly aggregated forms. We then fractionated aqueous extracts (cytosol) from cerebral cortex using non-denaturing methods to search for soluble, disease-associated high molecular weight species potentially associated with toxicity. We applied these fractions and corresponding insoluble fractions containing Lewy-type aggregates to several reporter assays to determine their bioactivity and cytotoxicity. Ultimately, high molecular weight cytosolic fractions enhances phospholipid membrane permeability, while insoluble, Lewy-associated fractions induced morphological changes in the neurites of human stem cell-derived neurons. While the concentrations of soluble, high molecular weight α-synuclein were only slightly elevated in brains of dementia with Lewy bodies patients compared to healthy, age-matched controls, these observations suggest that a small subset of soluble α-synuclein aggregates in the brain may drive early pathogenic effects, while Lewy body-associated α-synuclein can drive neurotoxicity

    Cell-type Dependent Alzheimer's Disease Phenotypes: Probing the Biology of Selective Neuronal Vulnerability

    No full text
    Summary Alzheimer's disease (AD) induces memory and cognitive impairment in the absence of motor and sensory deficits during its early and middle course. A major unresolved question is the basis for this selective neuronal vulnerability. Aβ, which plays a central role in AD pathogenesis, is generated throughout the brain, yet some regions outside of the limbic and cerebral cortices are relatively spared from Aβ plaque deposition and synapse loss. Here, we examine neurons derived from iPSCs of patients harboring an amyloid precursor protein mutation to quantify AD-relevant phenotypes following directed differentiation to rostral fates of the brain (vulnerable) and caudal fates (relatively spared) in AD. We find that both the generation of Aβ and the responsiveness of TAU to Aβ are affected by neuronal cell type, with rostral neurons being more sensitive than caudal neurons. Thus, cell-autonomous factors may in part dictate the pattern of selective regional vulnerability in human neurons in AD

    Cell-type Dependent Alzheimer's Disease Phenotypes: Probing the Biology of Selective Neuronal Vulnerability

    No full text
    Summary: Alzheimer's disease (AD) induces memory and cognitive impairment in the absence of motor and sensory deficits during its early and middle course. A major unresolved question is the basis for this selective neuronal vulnerability. Aβ, which plays a central role in AD pathogenesis, is generated throughout the brain, yet some regions outside of the limbic and cerebral cortices are relatively spared from Aβ plaque deposition and synapse loss. Here, we examine neurons derived from iPSCs of patients harboring an amyloid precursor protein mutation to quantify AD-relevant phenotypes following directed differentiation to rostral fates of the brain (vulnerable) and caudal fates (relatively spared) in AD. We find that both the generation of Aβ and the responsiveness of TAU to Aβ are affected by neuronal cell type, with rostral neurons being more sensitive than caudal neurons. Thus, cell-autonomous factors may in part dictate the pattern of selective regional vulnerability in human neurons in AD. : In this article, Muratore et al. examine differential vulnerability of neuronal subtypes in AD by directing iPSC lines from control and familial AD subjects to different regional neuronal fates. APP processing and TAU proteostasis are differentially affected between regional fates, such that neuronal cell type dictates generation of and responsiveness to Aβ. Keywords: Alzheimer's disease, disease modeling, iPSCs, neural stem cells, Abeta, Tau, selective vulnerability, amyloid, familial AD, differential susceptibilit

    Cell-type Dependent Alzheimer's Disease Phenotypes: Probing the Biology of Selective Neuronal Vulnerability

    No full text
    Authors Alzheimer's disease (AD) induces memory and cognitive impairment in the absence of motor and sensory deficits during its early and middle course. A major unresolved question is the basis for this selective neuronal vulnerability. Aβ which plays a central role in AD pathogenesis, is generated throughout the brain, yet some regions outside of the limbic and cerebral cortices are relatively spared from Aβ plaque deposition and synapse loss. Here, we examine neurons derived from iPSCs of patients harboring an amyloid precursor protein mutation to quantify AD-relevant phenotypes following directed differentiation to rostral fates of the brain (vulnerable) and caudal fates (relatively spared) in AD. We find that both the generation of Aβ and the responsiveness of TAU to Aβ are affected by neuronal cell type, with rostral neurons being more sensitive than caudal neurons. Thus, cell-autonomous factors may in part dictate the pattern of selective regional vulnerability in human neurons in AD. In this article, Muratore et al. examine differential vulnerability of neuronal subtypes in AD by directing iPSC lines from control and familial AD subjects to different regional neuronal fates. APP processing and TAU proteostasis are differentially affected between regional fates, such that neuronal cell type dictates generation of and responsiveness to Aβ.BrightFocus FoundationBrigham Research InstituteNational Institutes of Health (U.S.) (Grant AG056011)National Institutes of Health (U.S.) (Grant T32AG000222
    corecore