6 research outputs found

    Prediction of Combustion Noise in a Model Combustor Using a Network Model and a LNSE Approach

    Get PDF
    The reduction of pollution and noise emissions of modern aero engines represents a key concept to meet the requirements of the future air traffic. This requires an improvement in the understanding of combustion noise and its sources, as well as the development of accurate predictive tools. This is the major goal of the current study where the low-order thermo-acoustic network (LOTAN) solver and a hybrid computational fluid dynamics/computational aeroacoustics approach are applied on a generic premixed and pressurized combustor to evaluate their capabilities for combustion noise predictions. LOTAN solves the linearized Euler equations (LEE) whereas the hybrid approach consists of Reynolds-averaged Navier–Stokes (RANS) mean flow and frequency-domain simulations based on linearized Navier–Stokes equations (LNSE). Both solvers are fed in turn by three different combustion noise source terms which are obtained from the application of a statistical noise model on the RANS simulations and a post-processing of incompressible and compressible large eddy simulations (LES). In this way, the influence of the source model and acoustic solver is identified. The numerical results are compared with experimental data. In general, good agreement with the experiment is found for both the LOTAN and LNSE solvers. The LES source models deliver better results than the statistical noise model with respect to the amplitude and shape of the heat release spectrum. Beyond this, it is demonstrated that the phase relation of the source term does not affect the noise spectrum. Finally, a second simulation based on the inhomogeneous Helmholtz equation indicates the minor importance of the aerodynamic mean flow on the broadband noise spectrum.</jats:p

    Efficient Three Dimensional Time-Domain Combustion Noise Simulation of a Premixed Flame Using Acoustic Perturbation Equations and Incompressible LES

    No full text
    Numerical studies of pulverized coal swirl combustion in oxy-fuel atmosphere are carried out. Thereby two issues are especially addressed: (1) how LES and RANS impact differently the predictions of combustion properties even though, in both approaches, the same kinetic rates are used to represent the coal combustion processes; (2) how the numerical multiphase treatments may affect the prediction of micro-process interaction as well as the range in which these processes are not negligible. For that purpose a methodology is developed based on an Eulerian-Lagrangian oxy-coal combustion module which is designed relying on the state of the art models as implemented in the commercial code ANSYS Fluent 17. This especially includes three kinetic rates for the description of coal combustion, namely coal devolatilization, volatile combustion and char combustion. Based on an appropriate Stokes number consideration, a full two-way inter-phase coupling has been numerically adopted. To assess the prediction capability of the overall model, a new set of experimental data from a 60 kW(th) oxy-coal test facility is employed. First, the model validation is ensured by comparison of results in terms of flow field and products from volatile and char combustion. Then, an analysis is performed to elucidate how the two-phase turbulence modeling impacts the thermal flow predictions along with the evolution of multiphase oxy-coal combustion properties. Finally, it is demonstrated how the numerical multiphase treatments affect the prediction of micro process interaction in terms of coal devolatilization, coal particle distribution due to turbulent particle dispersion, and of gaseous heat release as well as char burnout. The range in which these interphase processes (subgrid scale particle dispersion) are not negligible is also pointed out in terms of subgrid scale Stokes number. (C) 2017 Elsevier Ltd. All rights reserved

    Jet noise analysis using an efficient LES/high-Order acoustic coupling method

    No full text
    The use of a CFD/CAA method, where fluctuations are extracted on a surface and propagated analytically to the far-field, is becoming a practical approach for industrial jet noise prediction. However, the placement of the surface can be problematic and a source of error, so here an efficient LES/APE coupling method that relies on volumetric sources is utilised. This allows the use of an existing, well validated and robust finite volume LES code to compute the unsteady flow, from which the volumetric sources are extracted, to then compute the propagation of the acoustic waves to the far-field using a high-order finite element APE code with a grid more appropriate for this task. Furthermore, this coupled methodology allows the studying of noise propagation in complex configurations in which the use of surface integral methods could be challenging. In this work, a coupling strategy is used in which all the necessary data is exchanged directly via the high-speed communication network using an open-source library. The efficiency of the parallel-coupling strategy is demonstrated by applying it to a 2D canonical case and comparing it with an existing file-based approach. For the acoustic propagation, the APE solver used is called AcousticSolver, part of the high-order spectral/hp finite element open-source code Nektar++. The present LES/APE framework is fist validated for 3D jet applications by studying the noise propagation of a low-Reynolds number case. Then the method is applied to a more realistic high Reynolds number jet obtaining encouraging results in terms of flow and acoustic predictions.</div

    Two-way hybrid LES/CAA approach including acoustic feedback loop for the prediction of thermoacoustic instabilities in technical combustors

    No full text
    Due to the reduction of fuel consumption and new global emission limits, especially for the pollutant emissions of NOx, improvements to lean combustion technologies in aeroengine combustors are unavoidable. Near to the lean limits, combustion tends to be unstable. A geometry related coupling between unsteady heat release and acoustic perturbations leads to thermoacoustic instabilities, which show an undesirable impact on pressure, velocity and heat release in the combustor Such instabilities occur when the unsteady heat release fluctuations are in phase with the acoustic pressure fluctuations. The. aim of this study is to find an industrially applicable, three-dimensional numerical model for the prediction of combustion noise, which can also provide insight in thermoacoustic instabilities and acoustic effects in a responsive environment in enclosed, technical combustion systems. The turbulent reacting flow in a realistic gas turbine combustor has been computed by means of Large Eddy Simulation coupled to a tabulated chemistry approach based on the Flamelet Generated Manifold ansatz. The reactive LES provides very well suited method to study the impact of unsteady heat release as a major source of acoustic noise in combustion. For the simultaneous treatment of the reacting flow and its acoustic features, a Computational Aero Acoustics (CAA) solver has been coupled with the LES solver following a hybrid approach. In this work the acoustic wave propagation is calculated by the Linearized Euler Equations (LEE). The interface between both codes is optimized for the realisation of an acoustic feedback loop in order to obtain a suitable representation of acoustically self-excited oscillations. To demonstrate the prediction capability of the hybrid LES/CAA approach, geometry-dependent thermoacoustic instabilities in a generic half-dump combustor, for which experimental data are available, are investigated. The numerical results are compared to measured pressure fluctuations under both thermoacoustically stable and unstable conditions

    Nektar++: enhancing the capability and application of high-fidelity spectral/hp element methods

    Get PDF
    Nektar++ is an open-source framework that provides a flexible, high-performance and scalable platform for the development of solvers for partial differential equations using the high-order spectral/ element method. In particular, Nektar++ aims to overcome the complex implementation challenges that are often associated with high-order methods, thereby allowing them to be more readily used in a wide range of application areas. In this paper, we present the algorithmic, implementation and application developments associated with our Nektar++ version 5.0 release. We describe some of the key software and performance developments, including our strategies on parallel I/O, on in situ processing, the use of collective operations for exploiting current and emerging hardware, and interfaces to enable multi-solver coupling. Furthermore, we provide details on a newly developed Python interface that enables a more rapid introduction for new users unfamiliar with spectral/ element methods, C++ and/or Nektar++. This release also incorporates a number of numerical method developments – in particular: the method of moving frames (MMF), which provides an additional approach for the simulation of equations on embedded curvilinear manifolds and domains; a means of handling spatially variable polynomial order; and a novel technique for quasi-3D simulations (which combine a 2D spectral element and 1D Fourier spectral method) to permit spatially-varying perturbations to the geometry in the homogeneous direction. Finally, we demonstrate the new application-level features provided in this release, namely: a facility for generating high-order curvilinear meshes called NekMesh; a novel new AcousticSolver for aeroacoustic problems; our development of a ‘thick’ strip model for the modelling of fluid–structure interaction (FSI) problems in the context of vortex-induced vibrations (VIV). We conclude by commenting on some lessons learned and by discussing some directions for future code development and expansion

    Nektar++: Enhancing the capability and application of high-fidelity spectral/hp element methods

    No full text
    Nektar++ is an open-source framework that provides a flexible, performant and scalable platform for the development of solvers for partial differential equations using the high-order spectral/hp element method. In particular, Nektar++ aims to overcome the complex implementation challenges that are often associated with high-order methods, thereby allowing them to be more readily used in a wide range of application areas. In this paper, we present the algorithmic, implementation and application developments associated with our Nektar++ version 5.0 release. We describe some of the key software and performance developments, including our strategies on parallel I/O, on in-situ processing, the use of collective operations for exploiting current and emerging hardware, and interfaces to enable multi-solver coupling. Furthermore, we provide details on a newly developed Python interface that enable more rapid on-boarding of new users unfamiliar with spectral/hphp element methods, C++ and/or Nektar++. This release also incorporates a number of numerical method developments - in particular: the method of moving frames, which provides an additional approach for the simulation of equations on embedded curvilinear manifolds and domains; a means of handling spatially variable polynomial order; and a novel technique for quasi-3D simulations to permit spatially-varying perturbations to the geometry in the homogeneous direction. Finally, we demonstrate the new application-level features provided in this release, namely: a facility for generating high-order curvilinear meshes called NekMesh; a novel new AcousticSolver for aeroacoustic problems; our development of a 'thick' strip model for the modelling of fluid-structure interaction problems in the context of vortex-induced vibrations. We conclude by commenting some directions for future code development and expansion
    corecore