2,176 research outputs found

    Augmented Sparse Reconstruction of Protein Signaling Networks

    Full text link
    The problem of reconstructing and identifying intracellular protein signaling and biochemical networks is of critical importance in biology today. We sought to develop a mathematical approach to this problem using, as a test case, one of the most well-studied and clinically important signaling networks in biology today, the epidermal growth factor receptor (EGFR) driven signaling cascade. More specifically, we suggest a method, augmented sparse reconstruction, for the identification of links among nodes of ordinary differential equation (ODE) networks from a small set of trajectories with different initial conditions. Our method builds a system of representation by using a collection of integrals of all given trajectories and by attenuating block of terms in the representation itself. The system of representation is then augmented with random vectors, and minimization of the 1-norm is used to find sparse representations for the dynamical interactions of each node. Augmentation by random vectors is crucial, since sparsity alone is not able to handle the large error-in-variables in the representation. Augmented sparse reconstruction allows to consider potentially very large spaces of models and it is able to detect with high accuracy the few relevant links among nodes, even when moderate noise is added to the measured trajectories. After showing the performance of our method on a model of the EGFR protein network, we sketch briefly the potential future therapeutic applications of this approach.Comment: 24 pages, 6 figure

    Proximity Drawings of High-Degree Trees

    Full text link
    A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex set is considered aesthetically pleasing. However, such a drawing can only exist if the tree has maximum degree at most 6. What can be said for trees of higher degree? We approach this question by supposing that a partition or covering of the tree by subtrees of bounded degree is given. Then we show that if the partition or covering satisfies some natural properties, then there is a drawing of the entire tree such that each of the given subtrees is drawn as a minimum spanning tree of its vertex set

    QoE for Mobile Streaming

    Get PDF
    No abstract

    Management system requirements for wireless systems beyond 3G

    Get PDF
    This paper presents a comprehensive description of various management system requirements for systems beyond 3G, which have been identified as a result of the Software Based Systems activities within the Mobile VCE Core 2 program. Specific requirements for systems beyond 3G are discussed and potential technologies to address them proposed. The analysis has been carried out from network, service and security viewpoints

    Fossil vs. active geothermal systems: A field and laboratory method to disclose the relationships between geothermal fluid flow and geological structures at depth

    Get PDF
    Comparison between fossil and analogue active geothermal systems permit to obtain key-parameters to define a conceptual model of the area under exploration. The approach is based on structural, kinematic, and fluid inclusions analyses. The fossil system is investigated to describe the distribution of the hydrothermal mineralization as witness of the fluid flow through geological structures and bodies, at depth. Structural and kinematic data (to define the preferential direction of fluid flow) are collected in structural stations and by scan lines and scan boxes on key outcrops. Distribution, length, width of fractures, and hydrothermal veins bring to evaluate permeability in the fossil system and, by analogy, in the deep roots of the active system. Fluid inclusions analysis shed light on density, viscosity, and temperature of the paleo-fluids. Data integration provides the hydraulic conductivity. In active geothermal systems, fieldwork is addressed to paleo-stress analysis with data from recent faults (<2 Ma), to compare with local focal mechanisms. By this, indications on the present fluid pathways are given. The main advantage resides in obtaining parameters normally got after drilling, thus contributing to strengthen the strategy of exploration, de-risking unsuccessful boreholes

    Molecular structure of highly-excited resonant states in 24^{24}Mg and the corresponding 8^8Be+16^{16}O and 12^{12}C+12^{12}C decays

    Full text link
    Exotic 8^8Be and 12^{12}C decays from high-lying resonances in 24^{24}Mg are analyzed in terms of a cluster model. The calculated quantities agree well with the corresponding experimental data. It is found that the calculated decay widths are very sensitive to the angular momentum carried by the outgoing cluster. It is shown that this property makes cluster decay a powerful tool to determine the spin as well as the molecular structures of the resonances.Comment: 17 pages, no figur

    Alpha Decay Hindrance Factors: A Probe of Mean Field Wave Functions

    Full text link
    A simple model to calculate alpha-decay Hindrance Factors is presented. Using deformation values obtained from PES calculations as the only input, Hindrance Factors for the alpha-decay of Rn- and Po-isotopes are calculated. It is found that the intrinsic structure around the Fermi surface determined by the deformed mean field plays an important role in determining the hindrance of alpha-decay. The fair agreement between experimental and theoretical Hindrance Factors suggest that the wave function obtained from the energy minima of the PES calculations contains an important part of the correlations that play a role for the alpha-decay. The calculated HF that emerges from these calculations render a different interpretation than the commonly assumed n-particle n-hole picture.Comment: 7 pages, 9 figure

    Abrupt changes in alpha decay systematics as a manifestation of collective nuclear modes

    Full text link
    An abrupt change in α\alpha decay systematics around the N=126 neutron shell closure is discussed. It is explained as a sudden hindrance of the clustering of the nucleons that eventually form the α\alpha particle. This is because the clustering induced by the pairing mode acting upon the four nucleons is inhibited if the configuration space does not allow a proper manifestation of the pairing collectivity.Comment: 6 pages, 3 figures, submitted to Phys. Rev. C, a few new references adde
    • …
    corecore