41 research outputs found

    Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada

    Get PDF
    Background: This study provides experimental evidence for biologically induced precipitation of magnesium carbonates, specifically dypingite (Mg(CO)(OH) ·5HO), by cyanobacteria from an alkaline wetland near Atlin, British Columbia. This wetland is part of a larger hydromagnesite (Mg(CO)(OH) ·4HO) playa. Abiotic and biotic processes for magnesium carbonate precipitation in this environment are compared. Results: Field observations show that evaporation of wetland water produces carbonate films of nesquehonite (MgCO ·3HO) on the water surface and crusts on exposed surfaces. In contrast, benthic microbial mats possessing filamentous cyanobacteria (Lyngbya sp.) contain platy dypingite (Mg (CO)4(OH)·5HO) and aragonite. Bulk carbonates in the benthic mats (δC avg. = 6.7%, δO avg. = 17.2%) were isotopically distinguishable from abiotically formed nesquehonite (δC avg. = 9.3%, δO avg. = 24.9%). Field and laboratory experiments, which emulated natural conditions, were conducted to provide insight into the processes for magnesium carbonate precipitation in this environment. Field microcosm experiments included an abiotic control and two microbial systems, one containing ambient wetland water and one amended with nutrients to simulate eutrophic conditions. The abiotic control developed an extensive crust of nesquehonite on its bottom surface during which [Mg] decreased by 16.7% relative to the starting concentration. In the microbial systems, precipitation occurred within the mats and was not simply due to the capturing of mineral grains settling out of the water column. Magnesium concentrations decreased by 22.2% and 38.7% in the microbial systems, respectively. Laboratory experiments using natural waters from the Atlin site produced rosettes and flakey globular aggregates of dypingite precipitated in association with filamentous cyanobacteria dominated biofilms cultured from the site, whereas the abiotic control again precipitated nesquehonite. Conclusion: Microbial mats in the Atlin wetland create ideal conditions for biologically induced precipitation of dypingite and have presumably played a significant role in the development of this natural Mg-carbonate playa. This biogeochemical process represents an important link between the biosphere and the inorganic carbon pool

    Development of Bacterial Biofilms on Artificial Corals in Comparison to Surface-Associated Microbes of Hard Corals

    Get PDF
    Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passive settlement from the water column to artificial coral surfaces (formation of a biofilm) were assessed. Changes in bacterial diversity (16S rRNA gene), were studied on artificially created resin nubbins that were modelled from the skeleton of the reef building coral Acropora muricata. These models were dip-coated in sterile agar, mounted in situ on the reef and followed over time to monitor bacterial community succession. The bacterial community forming the biofilms remained significantly different (R = 0.864 p<0.05) from that of the water column and from the surface mucus layer (SML) of the coral at all times from 30 min to 96 h. The water column was dominated by members of the α-proteobacteria, the developed community on the biofilms dominated by γ-proteobacteria, whereas that within the SML was composed of a more diverse array of groups. Bacterial communities present within the SML do not appear to arise from passive settlement from the water column, but instead appear to have become established through a selection process. This selection process was shown to be dependent on some aspects of the physico-chemical structure of the settlement surface, since agar-coated slides showed distinct communities to coral-shaped surfaces. However, no significant differences were found between different surface coatings, including plain agar and agar enhanced with coral mucus exudates. Therefore future work should consider physico-chemical surface properties as factors governing change in microbial diversity

    Wave-swept coralliths of Saba Bank, Dutch Caribbean

    Get PDF

    Marine radiocarbon reservoir effect along the north-eastern coast of Australia during the Holocene

    No full text
    Radiocarbon dating of surface ocean samples involves estimates of marine radiocarbon reservoir effect (e.g., marine reservoir age (R) and correction (ΔR)). These values for a given location are generally assumed to be constant with time when calibrating marine 14C ages. However, recent studies have reported large variability in the marine radiocarbon reservoir effect of several hundred to a couple of thousand years for various regions in the Pacific, Atlantic and Mediterranean during the Late-glacial and Holocene (Siani et al., 2001; Bondevik et al., 2006; Burr et al., 2009; Hua et al., 2009; Yu et al., 2010; Ortlieb et al., 2011; Sarnthein et al., 2011). These variations result from changes in ocean circulation and the carbon cycle associated with climate change. In this paper we present an investigation of possible variability in the marine radiocarbon reservoir effect along the north-eastern coast of Australia in South-Western (SW) Pacific during the last 8000 years. This study aims to get a better understanding of ocean circulation changes associated with climate change for the study area during the Holocene and to improve radiocarbon dating of marine samples

    Beachrock formation via microbial dissolution and re-precipitation of carbonate minerals

    No full text
    Cementation of beach sand in the intertidal zone produces beachrock, such as that found on Heron Island (Heron Reef, Great Barrier Reef, Australia). Although common to coastlines in many low-latitude beach environments, the cause of cementation is not fully understood. In this investigation, electron and X-ray fluorescence microscopy were used to characterize previously undocumented features of beachrock. Two generations of beachrock were examined as a means of understanding the progression of cementation. Meniscus-shaped attachments at point contacts appear to be the first cements to form in biofilms near the beachrock surface. This is followed by isopachous fringe cements within the now ‘enclosed’ beachrock, composed of aragonite needles that are enriched in strontium and contain extracellular polymeric substances (EPS). Cement precipitation is driven by locally high concentrations of cations in solution, undoubtedly generated via microbial dissolution of the detrital carbonate grains. Binding to negatively charged bacterial EPS retains these cations within beachrock microenvironments. The metabolism of cyanobacteria and associated heterotrophs induce the supersaturating conditions needed for cement precipitation. Deeper within beachrock (mm to cm-below the surface), abundant microbialites are found on the edges of grains and contain trapped and bound detrital material. These structures are laminated, enriched in strontium in some layers, and contain microfossils. The results of this investigation clearly demonstrate a biological influence in the precipitation of aragonite cement involving internal recycling of cations through microbial dissolution and precipitation of carbonate minerals

    Clypeotheca, a new skeletal structure in scleractinian corals: A potential stress indicator

    No full text
    Physiological responses to environmental stress are increasingly well studied in scleractinian corals. This work reports a new stress-related skeletal structure we term clypeotheca. Clypeotheca was observed in several live-collected common reef-building coral genera and a two to three kya subfossil specimen from Heron Reef, Great Barrier Reef and consists of an epitheca-like skeletal wall that seals over the surface of parts of the corallum in areas of stress or damage. It appears to form from a coordinated process wherein neighboring polyps and adjoining coenosarc seal themselves off from the surrounding environment as they contract and die. Clypeotheca forms from inward skeletal centripetal growth at the edges of corallites and by the merging of flange-like outgrowths that surround individual spines over the surface of the coenosteum. Microstructurally, the merged flanges are similar to upside-down dissepiments and true epitheca. Clypeotheca is interpreted primarily as a response to stress that may help protect the colony from invasion of unhealthy tissues by parasites or disease by retracting tissues in areas that have become unhealthy for the polyps. Identification of skeletal responses of corals to environmental stress may enable the frequency of certain types of environmental stress to be documented in past environments. Such data may be important for understanding the nature of reef dynamics through intervals of climate change and for monitoring the effects of possible anthropogenic stress in modern coral reef habitats

    Stromatolite reef from the Early Archean era of Australia

    No full text
    The 3,430-million-year-old Strelley Pool Chert (SPC) (Pilbara Craton, Australia) is a sedimentary rock formation containing laminated structures of probable biological origin (stromatolites). Determining the biogenicity of such ancient fossils is the subject of ongoing debate. However, many obstacles to interpretation of the fossils are overcome in the SPC because of the broad extent, excellent preservation and morphological variety of its stromatolitic outcrops—which provide comprehensive palaeontological information on a scale exceeding other rocks of such age. Here we present a multi-kilometre-scale palaeontological and palaeoenvironmental study of the SPC, in which we identify seven stromatolite morphotypes—many previously undiscovered—in different parts of a peritidal carbonate platform. We undertake the first morphotype-specific analysis of the structures within their palaeoenvironment and refute contemporary abiogenic hypotheses for their formation. Finally, we argue that the diversity, complexity and environmental associations of the stromatolites describe patterns that—in similar settings throughout Earth's history—reflect the presence of organisms.5 page(s
    corecore